

SENCATE

materials that make a difference

materials that make a difference

WHY?...Interlayers Extend Pavement Life

- ✓ Preserve base structural value
- ✓ Delay crack return
- ✓ Add flexural strength to HMA
- ✓ Significant Cost / Benefit ratio
- ✓ Reduce impact of asphalt cost

price volatility and continued escalation Eg. In Dec. 07, \$175/ton, today...\$650+

WHY?... Evolution to improved interlayers

- ✓ beyond fabric or glass grids
- √ to multifunctional
- √to multi-axial reinforcement
- √ to in-place functionality

Distress Interlayers Address

Distress Interlayers Address

Typical Crack Growth

Interlayer Functionality

Absorb/Dissipate Low Strain Crack Stress

Interlayer Functionality

Stress Dissipating Interlayer

Interlayer Functionality Loss of Base Load Bearing Capacity

"One major factor that degrades a roadbed's ability to function is the infiltration of water into the base material."

Caltrans Pavement Evaluation Manual
Pavement Condition Survey
John Poppe

Interlayer Functionality Loss of Base Load Bearing Capacity

 Water intrusion through pavement into base: 33-67%

Federal Highway Admin. (FHWA) RD 73-14, states; "between 33 and 67% of storm water infiltrates through the pavement"

- -Asphalt from 33% 50%
- -Concrete from 50% 67%

Pavement cracks increase base degradation:

Cracks significantly increase water penetration and base degradation, leading to loss of load bearing capacity.

Loss of Base Load Bearing Capacity

From <u>Drainage Of Highway And Airfield Pavements</u>
By Harry R. Cedergren

Interlayer Functionality Keeping Water out of the Base

No Moisture Barrier

With Moisture Barrier

Interlayer Functionality

Geosynthetic Pavement Interlayers

Interlayers Types

FABRICS

MATS

GRIDS

Continuous Strand Fiberglass

How Do They Work

STRAIN ABSORBING

Mass to soak up (Sponge)

STRESS DISSIPATING

Tensile strength and efficiency to disperse low strain crack energy (Rebar)

Tighter bond,
thicker/more mass =
greater ability to
absorb = better
reflective crack
retardation

Tighter bond, higher, more efficient tensile strength, more homogeneous the structure = greater ability to dissipate crack energy = better reflective crack retardation

Interlayer Functionality - Fabric

Interlayer Functionality - Multi-Axial Mat

Interlayer Functionality - Multi-Axial Grid

Interlayer Functionality - Bi-Axial Grid

Interlayer Functionality - Bi-Axial Composite Grid

Interlayer Functionality - Bi-Axial Grid

Interlayer Functionality Summary

FUNCTIONALITY		SEALING Moisture Barrier	STRESS RELIEF Crack Stress	REINFORCEMENT	REINFORCEMENT	ADNESIVE BENDING		Ease of I	uctibility nstallation Uncoated,	
	Description		Membrane	Relief	Bi-Axial	Multi-Axial	bond	Mills + Recycles into new mix		Flexible Rolls
	SAMI Type Geosynthetic Interlayer									
Fabric	Pol	lypropylene Fabric	YES	CAN	NO	NO	YES	Can Be	YES	YES
	Fiberglass Tensile Reinforcing Interlayers									
Mat	Multi-Axial	Multi-Axial Mat	YES	YES	YES	Up to 80N	YES	YES	YES	YES
	Multi	Multi-Axial Composite	YES	YES	YES	Up to 100kN	YES	YES	YES	YES
Grids	a 	PreCoated Self Stick/Scrim	NO	YES	Up to 100kN	NO	NO	YES	NO	NO
Gr	Bi-Axia	PreCoated Composite	YES	YES	Up to 100kN	NO	YES	Can Be	NO	NO
		Composite	YES	YES	Up to 100kN	NO	YES	Can Be	YES	YES

Interlayer Selection by Functionality

Over Stable Base

Interlayer Selection by Functionality

Interlayer Selection by Functionality

Interlayer Cost / Benefit

DRAFT Calculating Cost/Benefit of Interlayers **DRAFT**

Density can be adjusted as needed in [Cell E4]

Adi, local cost of Hot Mix Asphalt (HMA) in [Cell B4]

ay. Iocai cost of flot iv	IIX Aspi	iait (ii	iving in [ech ba]	an be daje	isted as need	La III [CCII E4]			
HMA Cost: \$7	75.00 T	on	HMA Density	140	Lbs/Inch	Tons	0.07	SY	
·						1" HMA Cost	\$5.25	SY	
These are Budgetary numbers based on logistics allowing for Min. of rate and will vary depending on job conditions and staging that impa					•	Validation Based on: PRI Actual Study ¹ Results			
interlayers can be installed.							Study R	esuits	
	VING IN	Cost n	ot included ER TOTAL INSTALLED COST PER SY	\$ SY	HMA + Interlayer	Reflective Crack Effective- ness Factor*	Yrs to Crack Return^	SY Cost Per Year	
		OPTIC		4	Cost/SY	Hess Factor			
Thickness in In	iches:	3.0	Inches of HMA Overlay	\$15.75	-	1	3	\$5.25	
	Ac	ld loc	al Installed Cost for Interlayers	$\downarrow \downarrow \downarrow \downarrow$					
MPV500 4.1 Oz PP Fabric				\$2.20	\$17.95	1.6	4.8	\$3.74	
Multi-Axial Fiberglass Mat					\$19.25	2.75	8.25	\$2.33	
Multi-Axial Fiberglass Grid					\$22.35	5.5	16.5	\$1.35	
1 _{DDI ctud}	v of Inte	arlavor	effectiveness using APA Crack to	cting (SEE	ATTACHED GI	DADU on 2nd	tah)		

'PRI study of Interlayer effectiveness using APA Crack testing, (SEE ATTACHED GRAPH on 2nd tab)

^Crack return rate on HMA control with no interlayer = 1

*Interlayer Effectiveness Factore (IEF) = Amount of Reflective Crack delay the Interlayer provided compared to the Control

Interlayer Sample Job Performance City of Santa Cruz Profile

In 2004 the City of Santa Cruz did a three test sections of 2" HMA over concrete using three different options.

- Section #1 no interlayer
- Section #2 Paving Fabric
- Section #3 Paving Mat

Section #2

Installed 2004

Fabric

2006

Section #3 TruPave Paving Mat (Fiberglass)

Installed 2004

City of Hollister 2007 Overlay

Overlay done 4/07: Heavy cracking, but good base.

Before

Updated
7/22/10:
No reflective
cracking
found. Street
is still in great
condition.

After 7/22/10

NOTE: Other streets in the same project with Paving Fabric and SAMI as their interlayer are both already showing cracking and fatigue.

Interlayer Sample Job Performance

Boones Ferry - BEFORE

Lake Oswego-Boones Ferry
TruPave Paving Mat

Interlayer Sample Job Performance

Lake Oswego-Boones Ferry
TruPave Paving Mat

Chip Seal with Fabric Application Paving Fabric under Chip Seal

What is this new tool used for ?

Delays reflective cracking

Eliminates surface water infiltration

30 years of placing double chip seal over fabric

Paving fabric interlayers are the Engineer's tool for preserving what was once impossible to preserve...

14-year old project (1996) (No maintenance to date)

San Diego County Chip Seal Life Cycle Cost Analysis 30 Yr

DRAFT Calculating Cost/Benefit of Chip Over

Adj. local cost of Ho	ot Mix As	Adjusted Density in [Cell E4]						
HMA Cost:	\$75.00	Ton	HMA Density	140	Tons	0.07	\$5.25	1" HMA/SY

Budgetary numbers based on logistics allowing a Min. 7000 SY's daily install rate. Will vary depending on anything that delays the daily installion rate.

OPRION TOTAL INSTALLED COST PER SY	\$ SY	Yrs to Crack Return^	SY Cost Per Year			
HMA Overlay Thickness: 2.0 Inches	\$10.50	2	\$5.25			
2" HMA over 4.1 Oz PP Fabric	\$12.70	3.2	\$3.97			
Double Chip over 4.1 Oz PP Fabric	\$7.00	20	\$0.35			
^Crack return rate on HMA control with no interlayer = 1						

Interlayer Use Summary

THANK YOU!

