

Workshop Overview

- **WMA**—State of the Art
- Understanding the Benefits of WMA
- Avoiding the <u>Pitfalls</u> of WMA
- Planning for your next
 WMA project
- WMA <u>Case Studies</u>

WMA—State of the Art

- WMA Snapshot circa 2012
- What is Warm Mix Asphalt?
- Why Warm Mix Asphalt is the Future of our Industry

WMA Snapshot circa 2012

- 23 WMA Technologies @ www.warmmix.org
- NCHRP 9-43 "Mix Design Practices for WMA"
- FHWA Reported WMA Tonnage for 2010
 - 47.6M tons of WMA produced in the US
 - 13.2% of total asphalt production
- FHWA Performance Metrics for WMA
 - 40 DOTs have WMA Specification by 2011
 - 30 DOTs achieve WMA production targets by 2012
- IARC assesses asphalt cement and its emissions as
 - Group 2B "Possibly carcinogenic to humans..."

WMA Defined

Warm Mix Asphalt Technologies generally allow a reduction in the temperature at which asphalt mixes are produced and placed thus helping the environment and workers' health and safety. WMA technologies can also be used as a compaction aid extending the paving season in colder climates when produced at normal temperatures at which hot mix asphalt is produced.

- WMA—when ambient temperatures are consistently **above 50°F**, the asphalt mix temperatures are typically reduced by 25°F to 80°F, depending on the technology used, plant mix configuration, % RAP used, and construction conditions.
- •Cold Weather WMA Application—when ambient temperatures are consistently **below 50°F**, the asphalt mixes are typically produced at near normal or slightly reduced temperatures of hot mix asphalt (depending on the technology used, % RAP used, and construction conditions) and is intended to facilitate placement and compaction at colder temperatures.

WMA Defined

Warm Mix Asphalt Technologies generally allow a reduction in the temperature at which asphalt mixes are produced and placed thus helping the environment and workers' health and safety. WMA technologies can also be used as a compaction aid extending the paving season in colder climates when produced at normal temperatures at which hot mix asphalt is produced.

- WMA—when ambient temperatures are consistently **above 50°F**, the asphalt mix temperatures are typically reduced by 25°F to 80°F, depending on the technology used, plant mix configuration, % RAP used, and construction conditions.
- •Cold Weather WMA Application—when ambient temperatures are consistently **below 50°F**, the asphalt mixes are typically produced at near normal or slightly reduced temperatures of hot mix asphalt (depending on the technology used, % RAP used, and construction conditions) and is intended to facilitate placement and compaction at colder temperatures.

WMA Benefits—General

- Stack Emissions
 - Environmental
 - Worker Safety
- Emissions at the Paver
- Reduced Energy Consumption
- Increased Capability to Use RAP

• WMA Technology has Many Potential Benefits!

WMA Benefits—Construction

- Cold Weather Paving (Extended Season)
- Longer hauls
- Improved Workability
- Larger Compaction Window
- Reduced Thermal Segregation
- Improved Opportunity to Achieve Density Incentive Pay

Do We Need a Compaction Aid?

WMA Benefits—Performance

- Rut Resistance
- Durability
- Crack Resistance
- Ride Quality
- Moisture Sensitivity

• Will WMA perform as well and last as long as HMA?

What is Warm Mix Asphalt?

Warm Mix—An Attempt to Define

What is Warm Mix?

What is Warm Mix?

2005: There were three WMA technologies:

- Aspha-min foam zeolite
- Sasobit wax
- Evotherm surfactant

2009: ~ 10 WMA technologies

2012: ~ 23 WMA technologies with many differences including:

- WMA mechanism—additive or process
- Effective temperature range for production and compaction

2015: ???

WMA Additives / Foaming Systems

- Advera

- LEA-CO
- Low Emission Asphalt
- Rediset WMX
- Sasobit
- WAM Foam
- Cecabase RT
- Qualitherm
- **ECOBIT**
- Thiopave

- Aspha-Min Gencor Green Machine Evotherm Maxam Aquablack
 - Stansteel Accu-Shear
 - Tri-Mix WMA Injection

Astec Double Barrel Green

- Terex WMA System
- **Eco-Foam II**
- Meeker Warm Mix
- **HGrant Warm Mix**
- SonneWarmix

Source: www.warmmixasphalt.com

There are three categories (types) of WMA Technologies:

WMA Additives / Foaming Systems

- Advera
- Aspha-Min
- Evotherm
- LEA-CO
- Low Emission Asphalt
- Rediset WMX
- Sasobit
- WAM Foam
- Cecabase RT
- Qualitherm
- ECOBIT
- Thiopave
- PUVAL ENGINEERING

- Astec Double Barrel Green
- Gencor Green Machine
- Maxam Aquablack
- Stansteel Accu-Shear
- Tri-Mix WMA Injection
- Terex WMA System
- Eco-Foam II
- Meeker Warm Mix
- HGrant Warm Mix
- SonneWarmix

WMA Plant Temperatures

Source: NAPA

Questions?

Benefits of WMA—General

Why Warm Mix?

- Stack Emissions
 - Environment—Good Neighbor
 - Worker Safety—IARC
- Emissions at the Paver
 - Worker Safety
- Reduced Energy Consumption
 - Lower Plant Temps → Less Fuel to Heat Mix
- Increased Capability to Use RAP

Depends...on WMA Technology

Reduced Emissions / Plant

200 °F Evotherm, 310°F HMA control

Reduced Emissions / Plant

Hot Mix

Warm Mix

Reduced Emissions / Plant

222 F 276 F

Mayors Climate Protection Agreement

Auburn
Bainbridge
Island
Battle Ground

Bellingham

Bellevue

Bremerton

Burien

Camas

Carnation

Clyde Hill

Coupeville

Edmonds

Everett

Ferndale

Issaquah

Kirkland

Lacey

Lake Forest Park

Lynnwood

Olympia

Pacific

Redmond

Renton

Sammamish

Seattle

Shoreline

Snoqualmie

Spokane

Tacoma

Tukwila

Tumwater

Vancouver

Washougal

Yarrow Point

Reduced Emissions / Construction

Warm Mix Asphalt

Warm Mix Asphalt

Source: Payne & Dolan

Reduced Emissions / Construction

Hot Mix Asphalt

Warm Mix Asphalt

Source: Payne & Dolan

Reduced Emissions / Paver

- Limestone
- PG76-22
- T mix: 240°F
- ΔT: 95°F

Life Cycle Energy Consumption

Source: Zaumanis (2010)

Total Energy Consumption

Source: Zaumanis (2010)

Total Energy Consumption

	HMA, Reference	WMA, Mixing - 20%	WMA, Mixing -50%	WMA, Comp - 20%	WMA, Comp - 20% Mix- 20%	HMA with 20% RAP	WMA with 40% RAP
Total energy demand, MJ	362606	342781	298327	371921	342285	375913	353834
Percentage	100%	95%	82%	103%	94%	104%	98%

Source: Zaumanis (2010)

Increased Capability to Use RAP

High RAP Warm Mix Asphalt								
	Control	20%	28%	35%				
		RAP	RAP	RAP				
Pen	29	39	32	28				
Viscosity	25,920	16,087	16,738	23,470				
Ductility	38	79	54	42				
DSR 64	7.35	4.39	5.74	7.56				
MSCR	26	42	37	32				
DSR 70	3.48	2.11	2.91	3.59				
BBR -12	0.394	0.437	0.406	0.393				

Increased Capability to Use RAP

Property	40% RAP HMA Control	40% RAP WMA	Superpave Specification	
Mix Production Temperature, °F	330	248	not applicable	
Viscosity (Pa-s)	1.357	1.017	3 Pa-s max.	
G*/sinδ at 64°C, kPa	9.60	5.31	not applicable to field binder samples	
G*/sinδ at 70°C, kPa	4.54	2.59		
G*/sinδ at 76°C, kPa	2.18	1.27		
G*/sinδ at 82°C, kPa	1.08	0.642		
G*/sinδ at 88°C, kPa	0.56	-		
Penetration (dmm)	15	23	not applicable	
BBR Stiffness (MPa)	222	158	300 MPa max	
m-value	0.296	0.328	0.300 min	
Pressure Aging Vessel G* x sinδ, kPa	5663	3218	5000 kPa max	

Source: MeadWestvaco

Increased Capability to Use RAP

Source: MeadWestvaco

Questions

WMA Benefits—Performance

WMA Benefits—Performance

- Durability ?
- Rut Resistance ?
- Crack Resistance
- Ride Quality
- Moisture Sensitivity ?

• Will WMA Perform As Well or Better than HMA?

Increased Durability

Warm Mix Asphalt

Rut Resistance

Source: NCAT

Rut Resistance—NCAT

Rutting Performance

Cycle of Construction Shown by Color (Black=2000, Blue=2003, Red=2006), N1-N10 & S11 Structural (M-E)

Source: NCAT

Rut Resistance-Caltrans HVS

Source: Caltrans

Increased Crack Resistance

Stress Crack

TxDOT Overlay Tester

Increased Crack Resistance

Source: Texas Transportation Institute

Increased Crack Resistance

Source: Texas Transportation Institute

Other Benefits (Concerns?)

- Improved Ride Quality
- Moisture Sensitivity

Questions?

WMA Benefits—Construction

WMA Benefits—Construction

- Cold Weather Paving (Extended Season)
- Longer hauls
- Improved Workability
- Larger Compaction Window
- Reduced Thermal Segregation
- Improved Opportunity to Achieve Density Incentive Pay

Extended Season Paving

WMA mix temperature behind the screed

Ground temperature at 7 a.m. was < 15°F

Mix contained 40% RAP PG 64-22

Extended Season Paving

Mix contained 40% RAP PG 64-22

Extended Season Paving

Mix contained 40% RAP PG 64-22

Excellent joint compaction

Time Available for Compaction

Delivery Temp 300F

Surface Temp 45F

Cessation Temp 175F

Time Available for Compaction

Delivery Temp 300F

Surface Temp 45F

Cessation Temp 150F

WMA at 50°F Air Temp

Time Available for Compaction

Delivery Temp 300F

Surface Temp 35F

Cessation Temp 150F

WMA at 35°F Air Temp

Reduced Thermal Segregation

62°F Difference

Reduced Thermal Segregation

Reduced Thermal Segregation

Hot Mix Asphalt

Warm Mix Asphalt

Source: Payne & Dolan

Improved Compaction

Roadway & Lab Densities @ 4.6% PG76-22

Potential for Incentive Pay

Roadway Densities TxDOT Specification % Bonus

Questions?

Case Studies

Case Studies—Asphalt Rubber

- I-5 Near Orland, CA
- Heavy Traffic
 - 26,000 AADT
 - 28% Trucks
- ½" RHMA-O WMA
 - Open Graded Friction Course
- Asphalt Rubber
 - PG64-16 Base
- 16,000 Tons WMA

Case Studies—Asphalt Rubber

Load Out Temp 290°F

Windrow Temp 280°F

Case Studies—Asphalt Rubber

Breakdown Rollers

250-260°F Breakdown

Success Stories—Increased RAP

City of Portland

Mix

½" NMAS 100 Gyrations 30 % RAP PG 70-22ER

HMA Production Temp 335 F

Case Studies—Increased RAP

City of Portland

WMA Production 255F

WMA Density >= 94% Gmm

Crew Reports
Very workable and less exhausting to work with WMA compared to HMA

Case Studies—Airport Pavement

Anchorage Intl Airport—RON Aprons

Base Layer—PG 58-34, ¾" NMAS Superpave

Source: AKDOT&PF

Case Studies—Airport Pavement

Source: AKDOT&PF

WMA—It is the future of our industry!

Thank You!

John I. Duval, P.E., LEED AP Principal Engineer Duval Engineering LLC john@duvalengineering.com

www.duvalengineering.com