FROM VERY THIN TO VERY THICK... PAVEMENTS

LINDSI HAMMOND, PE

GEOTECHNICAL | GEOLOGICAL | PAVEMENT | ENVIRONMENTAL

GRI

ASPHALT vs. CONCRETE IN OREGON

2020 OREGON MILEAGE REPORT Percent of Road Miles by Jurisdiction

COUNTY					
Asphalt	Concrete	Other	Lane Miles		
43%	0.1%	57%	26,663		
		TV			
		ΙΥ			
Asphalt	Concrete	Other	Lane Miles		
84%	3%	13%	11,314		

Other = Unimproved, Graded, Gravel, Oil Mat

https://www.oregon.gov/odot/Data/Documents/OMR_2020.pdf

ASPHALT vs. CONCRETE IN WASHINGTON

 Certeen of center whes by sursace

 Other

 State

 Visitie

 Federal

 Agencies

 City

 City

 County

 Https://wsdot.wa.gov/about/transportation-data/travel

data/annual-mileage-and-travel-information

WA State Highway Pavements					
Asphalt	Concrete	BST			
60%	13%	27%			

https://www.fhwa.dot.gov/asset/if08010/washcase_rev3.pdf

2021 WASHINGTON MILEAGE REPORT Percent of Centerline Miles by Jurisdiction

WHAT ARE THIN AND THICK PAVEMENTS?

Thin (1 to 1½") Asphalt Overlay

Get more out of your pavement structure

THIN OVERLAY

- Long life and low life-cycle cost!
- Safety / User
 - Minimize traffic delays
 - Smooth surface
 - Restore skid resistance
 - No loose stones & minimizes dust
 - Lower noise

Structural

- Maintain grade & slope
- Withstands heavy traffic
- ➤ Sustainable
 - Recycled materials
 - Seals surface & no binder run-off

WHAT ARE THIN AND THICK PAVEMENTS?

Perpetual Pavement

No deep structural distresses 35+ years of service

PERPETUAL PAVEMENT

GRI

➤ Long life!

Structural

- Top-down Cracking Only
- Withstands heavy traffic
- Easy to maintain

➤ Sustainable

- Recycled materials
- No Reconstruction

- David H. Timm, Ph.D., P.E. Auburn University
- > J. Richard Willis, Ph.D. National Asphalt Pavement Association

www.asphaltpavement.org

THIN OVERLAY

- **1) Project Selection**
- 2) Design
- 3) Materials
- 4) Construction

BASIC EVALUATION

- ➢Visual Survey
- Structural Assessment
 - No structural improvement required
- Drainage Evaluation
 - What changes are needed
- ➢ Functional Evaluation
 - Ride quality
 - Skid resistance

Discussion with Maintenance Personnel

Weathering/Raveling

Longitudinal Cracking (not in wheelpath)

Longitudinal Cracking (wheelpath)

Transverse Cracking

Alligator/Fatigue Cracking

Rutting/Shoving (surficial/requires milling)

Rough Ride?

To Mill or Not To Mill?

THIN OVERLAY - Design

If a Thin Overlay is the answer, you need to decide:

Surface Preparation

- Crack Sealing
- Milling
- TACK COAT!

- ≻Materials
 - Binder Grade
 - Aggregate
 - 4.75 to 12.5 mm NMAS

≻Thickness

- \leq 1.5 inches thick
- Ratio of lift thickness to NMAS range 3:1 to 5:1

THIN OVERLAY - Construction

➢ Production

- Aggregate Moisture
- Warm mix
- Storage/Haul

➤Surface Prep

- Milling
 - Standard, fine, micro
- Tack Coat
 - Rate: 0.10 to 0.15 gal/sy (undiluted emulsion)

THIN OVERLAY - Construction

➢Paving

- Best to move continuously
- MTV or windrow can help
- Cooling can be an issue
 - 1" cools 2× faster than 1.5"
- Warm mix

Compaction

- Seal voids & increase stability
- Low permeability
- No vibratory on < 1"</p>
- Roller Pattern!

THIN OVERLAY – Real Projects

THIN OVERLAY – Real Projects

City of Tigard

- Paved 2018
- Photos 2022

THIN OVERLAY – Real Projects

I-84

- Paved 2015/2016
- Photos 2022

PERPETUAL (THICK) PAVEMENT

- 1) Project Selection
- 2) Field Evaluation
- 3) Design
- 4) Materials
- 5) Construction

Evolution of Structural Pavement Design

www.asphaltpavement.org

PERPETUAL PAVEMENT – Project Selection

- Reconstruction/New Construction/Overlay
- Design to Prevent Deep Structural Distresses
- All Functional Classifications

www.asphaltpavement.org

(**T**

PERPETUAL PAVEMENT – Project Selection

What Information Do You Need?

Project Road

Traffic

Thickness Info

Material Properties

Subgrade Strength (M_R or CBR)

www.asphaltpavement.org

GRI

• What you Need to Know...Soil Resilient Modulus

https://engineersforum.com.ng/2020/05/08/ what-is-dynamic-cone-penetrometer-dcp/

Dynamic Cone Penetrometer (DCP)

([']T

Falling Weight Deflectometer (FWD)

Mechanistic-Empirical Pavement Design

Mechanistic-Empirical **PERPETUAL** Pavement Design

Design Inputs

- Traffic Loading
- Endurance Limit
- Modulus
 - Asphalt
 - Base
 - Subgrade

Design Inputs

- Traffic Loading
- Endurance Limit
- Modulus
 - Asphalt
 - Base
 - Subgrade

Efficient Design – Heaviest Wheel Loads

Does not depend on accurate traffic volume prediction

www.asphaltpavement.org

Design Inputs Traffic Loading Endurance Limit Asphalt Base Subgrade

An endurance limit is a threshold response below which damage does not occur.

www.asphaltpavement.org

Design Inputs

- Traffic Loading
- Endurance Limit
- Modulus
 - Asphalt Overlay
 - Base
 - Subgrade <

Overlay/Reconstruction/New Construction

Considerations if converting an exiting pavement to a Perpetual Pavement

Scenario 1) Healthy but structurally deficient

- Add thickness to meet design criteria
- Scenario 2) Distressed or failing
 - Perform rehabilitation to first deal with distress
 - Reflection cracking is a major problem...currently no perpetual design criteria
 - Design for perpetual pavement performance criteria

Traffic Dat	a											
Two-way Ar	nnual Average Daily Traffic (AADT)	21,800										
Directional	Distribution	59%										
Percent of 1	Trucks in Design Lane	100%										
Annual Con	npound Growth Rate	1.73%										
Truck Axle	Spectra	ana actuale	8 C. 1916 - 104		805-							
Axle load sp	pectra are based on the PerRoad default spectra for an urban princ	ipal arterial wit	h truck distribu	ution shown b	below							
FHWA Class	5	4	5	6	7	8	9	10	11	12	13	Total
Percent in C	Category	19.31%	63.28%	6.23%	0.38%	0.38%	9.78%	0.38%	0.00%	0.00%	0.25%	100%
Season			Summer	Fall	Winter	Spring						
Duration, w	eeks		17	9	13	13						
Mean Air Te	emperature, degrees Fahrenheit		67.7	51.1	42	53.2						
	al Xeen and an		Thickness,	Poisson		Average M	odulus, psi		Thickness	Variability	Modulus	Variability
Analysis Ca	ase Pavement Layers & Design Properties		inches	Ratio	Summer	Fall	Winter	Spring	Distribution	COV,%	Distribution	COV,%
0.00	Level 4, 1/2-inch, Dense ACP Wearing Course, PG 70-22ER		3	0.35	531,365	1,046,001	1,516,272	960,112	Normal	5	Log-normal	30
1	Level 3, 1/2-inch, Dense ACP Base Course, PG 64-22		8	0.35	391,324	784,928	1,149,595	718,767	Normal	5	Log-normal	30
	Aggregate Base		8	0.35	20,000	20,000	20,000	20,000	Normal	8	Log-normal	40
	Subgrade		Infinite	0.40	5,300	5,300	5,300	5,300	Normal	0	Log-normal	24
	Level 4, 1/2-inch, Dense ACP Wearing Course, PG 70-22ER		3	0.35	531,365	1,046,001	1,516,272	960,112	Normal	5	Log-normal	30
2	Level 3, 1/2-inch, Dense ACP Base Course, PG 64-22		9	0.35	393,056	786,689	1,150,800	720,578	Normal	5	Log-normal	30
2	Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base		9 8	0.35 0.35	393,056 20,000	786,689 20,000	1,150,800 20,000	720,578 20,000	Normal Normal	5 8	Log-normal Log-normal	30 40
2	Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base Subgrade		9 8 Infinite	0.35 0.35 0.40	393,056 20,000 5,300	786,689 20,000 5,300	1,150,800 20,000 5,300	720,578 20,000 5,300	Normal Normal Normal	5 8 0	Log-normal Log-normal Log-normal	30 40 24
2	Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base Subgrade Level 4, ½-inch, Dense ACP Wearing Course, PG 70-22ER		9 8 Infinite 3	0.35 0.35 0.40 0.35	393,056 20,000 5,300 531,365	786,689 20,000 5,300 1,046,001	1,150,800 20,000 5,300 1,516,272	720,578 20,000 5,300 960,112	Normal Normal Normal Normal	5 8 0 5	Log-normal Log-normal Log-normal Log-normal	30 40 24 30
2	Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base Subgrade Level 4, ½-inch, Dense ACP Wearing Course, PG 70-22ER Level 3, ½-inch, Dense ACP Base Course, PG 64-22		9 8 Infinite 3 10	0.35 0.35 0.40 0.35 0.35	393,056 20,000 5,300 531,365 394,683	786,689 20,000 5,300 1,046,001 788,340	1,150,800 20,000 5,300 1,516,272 1,151,929	720,578 20,000 5,300 960,112 722,275	Normal Normal Normal Normal	5 8 0 5 5	Log-normal Log-normal Log-normal Log-normal	30 40 24 30 30
2 3	Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base Subgrade Level 4, ½-inch, Dense ACP Wearing Course, PG 70-22ER Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base		9 8 Infinite 3 10 8	0.35 0.35 0.40 0.35 0.35 0.35	393,056 20,000 5,300 531,365 394,683 20,000	786,689 20,000 5,300 1,046,001 788,340 20,000	1,150,800 20,000 5,300 1,516,272 1,151,929 20,000	720,578 20,000 5,300 960,112 722,275 20,000	Normal Normal Normal Normal Normal	5 8 0 5 5 8	Log-normal Log-normal Log-normal Log-normal Log-normal	30 40 24 30 30 40
2 3	Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base Subgrade Level 4, ½-inch, Dense ACP Wearing Course, PG 70-22ER Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base Subgrade		9 8 Infinite 3 10 8 Infinite	0.35 0.40 0.35 0.35 0.35 0.35 0.40	393,056 20,000 5,300 531,365 394,683 20,000 5,300	786,689 20,000 5,300 1,046,001 788,340 20,000 5,300	1,150,800 20,000 5,300 1,516,272 1,151,929 20,000 5,300	720,578 20,000 5,300 960,112 722,275 20,000 5,300	Normal Normal Normal Normal Normal Normal	5 0 5 5 8 0	Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal	30 40 24 30 30 40 24
2	Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base Subgrade Level 4, ½-inch, Dense ACP Wearing Course, PG 70-22ER Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base Subgrade Level 4, ½-inch, Dense Damage Analysis Transfer Functions		9 8 Infinite 3 10 8 Infinite	0.35 0.40 0.35 0.35 0.35 0.35 0.40	393,056 20,000 5,300 531,365 394,683 20,000 5,300	786,689 20,000 5,300 1,046,001 788,340 20,000 5,300	1,150,800 20,000 5,300 1,516,272 1,151,929 20,000 5,300	720,578 20,000 5,300 960,112 722,275 20,000 5,300	Normal Normal Normal Normal Normal Normal	5 0 5 5 8 0 5	Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal	30 40 24 30 30 40 24 30
2 3	Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base Subgrade Level 4, ½-inch, Dense ACP Wearing Course, PG 70-22ER Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base Subgrade Level 4, ½-inch, Dense Level 4, ½-inch, Dense Level 3, ½-inch, Dense		9 8 Infinite 3 10 8 Infinite	0.35 0.35 0.40 0.35 0.35 0.35 0.35 0.40	393,056 20,000 5,300 531,365 394,683 20,000 5,300 nold Functi	786,689 20,000 5,300 1,046,001 788,340 20,000 5,300	1,150,800 20,000 5,300 1,516,272 1,151,929 20,000 5,300	720,578 20,000 5,300 960,112 722,275 20,000 5,300	Normal Normal Normal Normal Normal Normal	5 8 0 5 5 8 0 5 5 5	Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal	30 40 24 30 30 40 24 30 30
2 3 4	Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base Subgrade Level 4, ½-inch, Dense ACP Wearing Course, PG 70-22ER Level 3, ½-inch, Dense ACP Base Course, PG 64-22 Aggregate Base Subgrade Level 4, ½-inch, Dense Level 3, ½-inch, Dense Level 3, ½-inch, Dense Aggregate Base		9 8 Infinite 3 10 8 Infinite	0.35 0.35 0.40 0.35 0.35 0.35 0.35 0.40 Thres	393,056 20,000 5,300 531,365 394,683 20,000 5,300 hold Functione	786,689 20,000 5,300 1,046,001 788,340 20,000 5,300	1,150,800 20,000 5,300 1,516,272 1,151,929 20,000 5,300	720,578 20,000 5,300 960,112 722,275 20,000 5,300	Normal Normal Normal Normal Normal	5 8 0 5 5 8 0 5 5 8	Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal	30 40 24 30 40 24 30 24 30 30 50

Analysis Results (5,000 Simulations)

Vertical Compressive

Suborade

				AC Tensile Strain			
		ACP Thickness,	AB or ICTB Thickness,	Percent below	Damage/ Million	Time to 10% Damage,	Time to 100% Damage,
Analysis Case	Description	inches	inches	Threshold	Axles	years	years
1	11 inches of ACP on 8 inches of AB	11.0	8.0	80	2.3%	6.0	42.9
2	12 inches of ACP on 8 inches of AB	12.0	8.0	86	1.4%	9.3	58.7
3	13 inches of ACP on 8 inches of AB	13.0	8.0	90	0.9%	14.0	76.4
4	14 inches of ACP on 8 inches of AB	14.0	8.0	93	0.5%	23.1	103.1

200

50 percentile

PERPETUAL PAVEMENT – Materials

- Base Layer
- Intermediate Layer
- Wearing Course
- Functions of Asphalt Mixtures
 - Durable, economical base layers
 - Strong, rut resistant base and surface layers
 - Flexible, crack resistant surface and base layers
 - Smooth, safe, durable surfaces
 - Permeable, high-friction, low splash and spray surfaces

PERPETUAL PAVEMENT – Construction

Compaction Support

Weak Support Leads to Poor Compaction!

PERPETUAL PAVEMENT – Construction

Compaction Support

Strong Support Helps Compaction!

PERPETUAL PAVEMENT – Construction

Paving Best Practices = Same as Conventional Asphalt Pavements

City of Eugene

- Design Standards
 - Minimum Asphalt Thickness (table)
 - New Construction Design = 30 Years

- www.eugene-or.gov/DocumentCenter/View/26574/2016-PIDS-Manual_FINAL

Street Classification	Minimum Thickness
Local or Neighborhood Collector	6 inches
Local or Neighborhood Collector w/bus route	8 inches
Major Collector	8 inches
Arterial	9 inches

City of Hillsboro

- Design Standards
 - New Construction Design = 40 Years
 - Minimum AC Thickness = 5 inches
- www.hillsboro-oregon.gov/home/showpublisheddocument/18134/637081131749530000

City of Portland – 82nd Ave (Arterial)

Reconstruction

	AASHTO – 30 Year	Perpetual Pavement
AC Thickness, inch	13	13.5
Aggregate Thickness. inch	6 with geogrid	6 with geogrid

City of Eugene – Coburg Road (Arterial)

Rehabilitation

	Existing (Perpetual Pavement)	20-Year Rehabilitation/AASHTO
AC Thickness, inch	~11	4-inch mill/inlay
Aggregate Thickness, inch	~20	N/A

City of Eugene – Wilshire Lane (Local with buses)

Reconstruction

	AASHTO – 30 Year	Perpetual Pavement
AC Thickness, inch	10	15
Aggregate Thickness. inch	14 with geogrid	14 with geogrid

ODOT-I-5

New Construction

QUESTIONS?

Lindsi Hammond, PE

Connect with Me:

lhammond@gri.com www.linkedin.com/in/lindsihammond gri.com 720-375-4165

Our services include:

Geotechnical Engineering

Hazmat

Geologic Hazards

Laboratory Services

Pavement Engineering Construction Services

Seismic

Engineering

Alternative Delivery

Where we are located:

