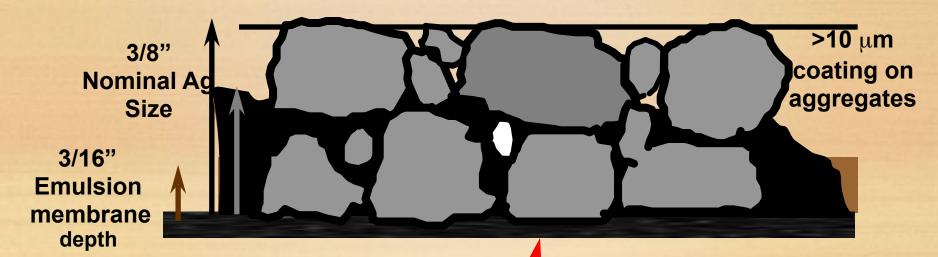
Bonded Wearing Course (BWC)

- What is BWC?
- Why use BWC?
- When to use BWC?

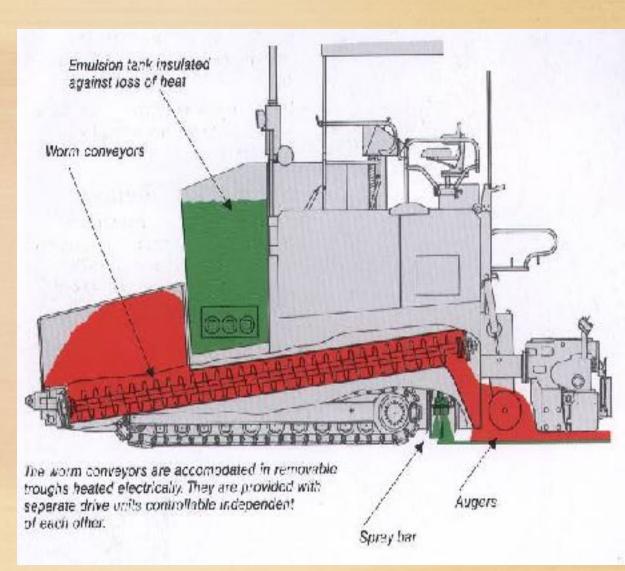
What is BWC?

- •A thin Hot Mix Asphalt Overlay placed over an emulsion membrane which:
 - seals the existing pavement
 - bonds the two surfaces
- •The roadway is open to traffic very quickly
- •This process is done in a single machine

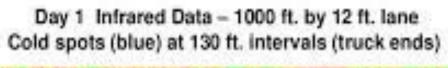


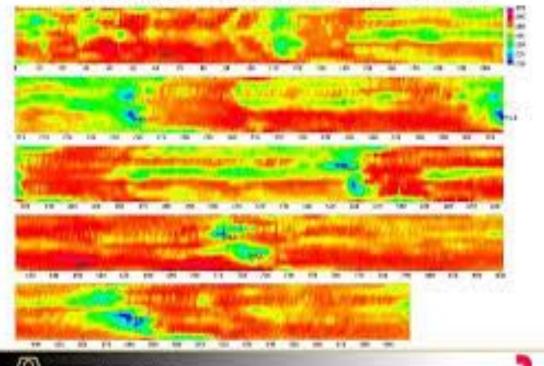
What is BWC?

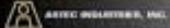
Emulsion membrane "wicks up" around the HMA aggregates

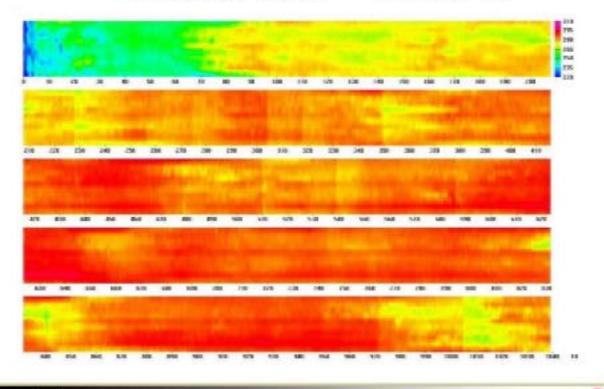

3/4" Typical Mix Depth

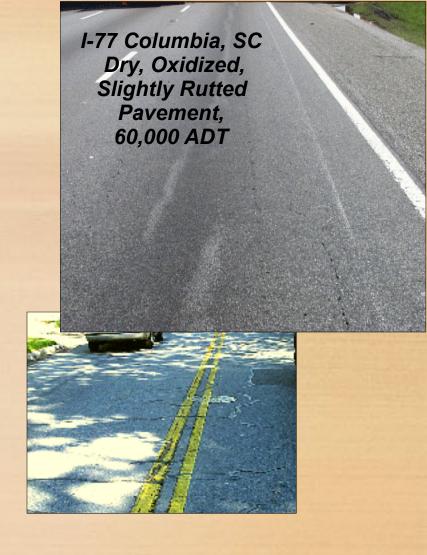
The emulsion cures, bonding the mix & pavement




BWC Specifications


- High quality aggregate
 - Restores & retains friction
- Gap-Graded or
- Open Graded Gradation
- Modified PG Binder or
- Rubberized AC
- Mix designed specially for process

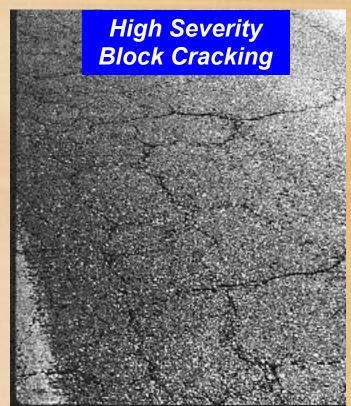




When to use?

Site Selection Guidelines

- Structurally sound pavement
- Rut depth < 1/2"
- Minor to moderate transverse & longitudinal cracking
- Bleeding minor to moderate
- Raveled



When NOT to use! Poor Candidates

High Severity
Alligator Cracking

Rutting >1/2"

Where/Why to use...continued

Quick return to traffic- Reduced Work Zone Time (Workers' Safety)

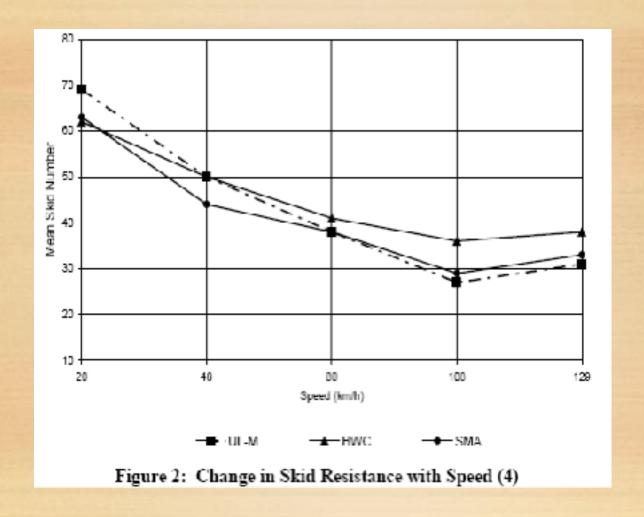
Noise Reduction- Open/Gap Graded Mix

Night Work- Min Temp 45° F (More working days)

Reduced Back spray- Open/Gap Graded Mix

High Volume Roadways- Faster Paving Process (Get In-Get Out)

Other Application Considerations


- Traffic Control
- Safety
- Night Work
- Returns/Hand Work (NO SETBACKS)
- Turn Pockets
- Milling
- Job Quantities
- Prep Work Required
- Quick return to traffic- Reduced Work Zone Time (Workers' Safety)
- Noise Reduction- Open/Gap Graded Mix
- Night Work- Min Temp 45° F (More working days)
- Reduced Back spray- Open/Gap Graded Mix
- High Volume Roadways- Faster Paving Process (Get In- Get Out)

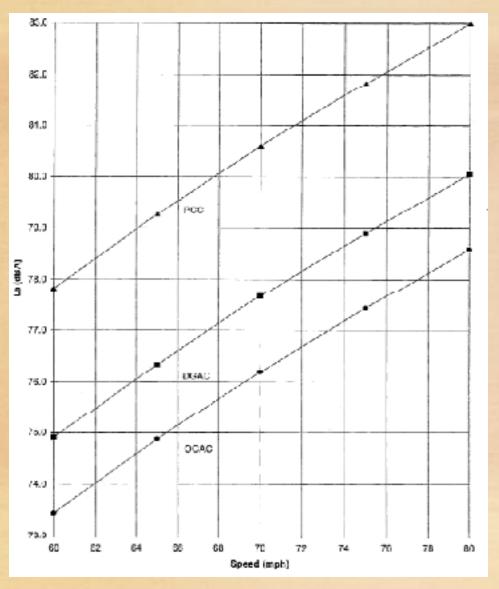
Performance Expectations

- Life and Costing
- Improved skid resistance
- Reduced traffic noise
- Spray Reduction
- Improved ride quality (Smoothness)
- Preventive Maintenance Activities Recommended
- Future Considerations

Skid Resistance

Spray Reduction

Table 8: Hydraulic Conductivity as an Indication of Spray Reduction Characteristics (4)	
Material	Hydraulic Conductivity (s-1)
14 mm SMA	0.03
12.5 mm BWC	0.06
10 mm UL-M	0.01
12.5 mm OGAC	0.12


Improved Ride Quality - (Smoothness)

 Minor ruts and depressions can be filled with BWC to improve ride quality

Noise Reduction Data

Data from Acentech Route 85
Noise Mitigation Study
Report No. 184
Dated: January 1998

Note: OGAC was the designation for BWC in this study

Future Considerations

- The main method of failure is wear; the surface oxidizes and is abraded
- Future PM applications may include:
 - Fog Seal
 - Micro surfacing
 - Additional BWC Application
 - Cold in-Place Recycling
 - Mill and Replace

Design Considerations

- Mobilization
- Typical Materials Items
- Quantity Calculations
- Production Rates
 - Roadway Widths
 - Roadway Geometry
- Traffic Control
- Miscellaneous Items
- Sample Projects include (City Of Hillsboro * Snohomish County, WA)

Mobilization

- Similar to Typical Asphalt Paving
- On-site Staging Required
 - Area for Tanker and Distributor exchange
- Special Permitting None

Typical Materials Items

- Asphalt Concrete Tons
 - Use maximum lbs./SY for selected aggregate size
 - 3/8" PMA OG or GG (9.5mm) = 85 lbs./SY
 - $\frac{1}{2}$ " PMA OG or GG (12.5mm) = 100 lbs./SY
 - 3/8" AR OG of GG (9.5mm) = 85 lbs./SY
- Emulsion Tons
 - Use 0.2 gallons/SY for emulsion application

Example of Actual BWC Calculation

- Typical 2 Lane Roadway 1 mile long with 3 foot shoulders = 17,600 SY
- 10 mile section of roadway = 176,000 SY
- AC Tons for Type B (3/8"):
 - 176,000 SY X 95 lbs./SY / 2000 lb. = 8,360 Total AC Tons
- Emulsion Tons
 - 176,000 x 0.2 GAL/SY / 240 Gal/Ton = 147 Tons of Emulsion

Production Rates and Paving Days

- Production Rate
 - Mainline Paving 125 tons per hour
 - Returns/Turn pockets 40-50 tons per hour
- (# of Paving Days)
 - Minimum 5 days to make cost effective

Roadway Geometry and Widths

- Urban
 - Milling 1" contour edge grind required to match curb and gutter and existing pavement
 - Drainage
 Minimal water trapped against curb due to emulsion filling void structure and thin lift
 Less water intrusion to pavement interface due to emulsion membrane

Rural

- Cross-slopes
 - Shoulder
 - Generally best used for Travel Lane with 1 foot beyond fog line For Grade differential greater than 2% from Mainline to Shoulder, the shoulder must be paved separately in order to maintain the grade Edge drop-off will be less than 3/4.2 (consider bicycle traffic material can not be feather down lower

 - then top size agg.)
 With the BWC process it is recommended that shoulders and turn-pockets be paved first and through lane last.
 Varying Width
 Typical Paving machine width 8-14 feet variable

Traffic Control

- Typical release to traffic 10-20 minutes behind paver
- Multi-lane highways, restripe quicker
- Two-lane roadways shorter closure times
- Thinner lift allows faster production
- Emulsion Membrane eliminates need for Tack Coat
- One step operation

Miscellaneous Items

- Edge grinding
- Crack seal hot applied min one month prior
- Patching hot mix only, cold mix continues to rut
- Utilities Adjustments most likely necessary
- Loops may need to be replaced if doing edge grinding
- Dig Outs Prior to paving
- Signing and Striping

Material Specifications

- Binders
 - Polymer modified asphalt spec
 - Rubberized Asphalt spec
- Aggregates
 - Gradations
 - Physical Properties
- Mix Design
- **Emulsion** Membrane

 - ApplicationSpecifications

Aggregate Gradations

- Aggregate Gradations available.
 - 9.5mm (3/8") Fine minimum application thickness of 5/8" (typically ³/₄" recommended).
 - 9.5mm (3/8") Coarse minimum application thickness of 3/4" (typically 1" recommended).
 - 12.5mm (1/2") minimum application thickness of 7/8" (typically 1.25" recommended).

Emulsion Membrane Application

(Used with both Polymer Modified and AR Mixes)

- The emulsion membrane is designed to give high flexibility and bonding in the range of climactic conditions in which bonded wearing courses are placed.
- Application rate is typically .20 gal/SY +/- .05 depending on existing conditions.
- The emulsion is designed to break rapidly after spraying to ensure that no water is trapped. The gap-graded nature of the mix allows water to escape, thus promoting breaking of the emulsion.

Topics to be covered

- Understand/Review Specifications
- Safety and Traffic Control
- **SWPPP**
- Surface Preparation
- Equipment Requirements

 Calibrations
- Approved Mix design
 - Sampling and Testing Binder Mix Emulsion
- Mix Production and Handling
- Required Application Conditions
- Application of Materials
- Production Rates Roadway Geometry and Paving Widths
- Application Problems and Solutions

OPENING TO TRAFFIC

- Traffic can be allowed onto the new surface once rolling is completed and the mix temperature has fallen below 70°C (158°F).
- Typically, no post sweeping is required unless the mix begins to ravel.

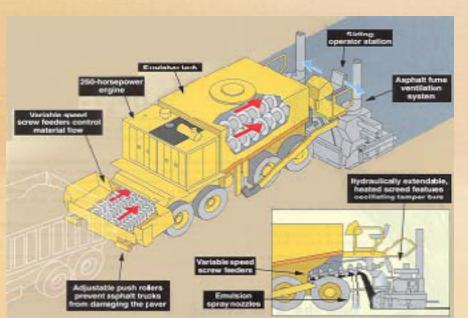
Surface Preparation

- Cracks greater than 6 mm wide (1/4 in) should be filled or sealed prior to application
- The use of over-banding methods of crack sealing is not recommended for this treatment
- Manhole covers, drains, grates, catch basins, and other utility services must be covered prior to application with roofing paper or equivalent
- Any surface irregularities deeper than 25 mm (1 in) should be filled with dense graded hot mix before applying the BWC.
- Prior to application, the pavement should be swept with a rotary broom equipped with metal or nylon broom stock.
- Grinding???

Preparation

- Milled Joints
 - Beware of Quarter Crown Issues
 - transverse cuts should be 2X paving depth
- Consider hot-mix tapers

Roadway Cleanliness


Construction Entrance Not Swept Prior to BWC Application

Equipment Requirements

• The most significant requirement is that the binder application and hot mix spreading function are combined into a single unit.

Membrane

Spray Bar Shot Rate Calculation

Shot Rate Calculation:

The following equation will be used to calculate the shot rate of the emulsion spray bar.

ShotRate(gal |
$$yd^2$$
) = $\frac{PW(g)}{PA(in^2)} \times 0.337$

- PA (in²) = Pad Area = L (in) * W (in)
- PW(g) = Weight of Emulsion = Pad and Emulsion (g) Pad (g)
 - Example:

$$PW = 371.2 - 300.0 = 71.2 \text{ g}$$

 $PA = 9.5 * 17.25 = 163.9 \text{ in}^2$

ShotRate yal /
$$yd^2 = \frac{71.2 \text{ g}}{163.9 \text{ m}^2} * 0.337$$

Approved Mix Design

PROJECT Caltrary Rtc 20

CONTRACTOR - Windsor Fuel Company

DINDER Valero GGD1

SUPPLIER - Syar

TECHNICAL MARKETING REP | Ocott Mctcalf (909) 220 2159

W.O. DATE COMPLETED: TEGI INCLOCIDT: 9-Jun-34 Michael Extine

TECHNICAL CONTACT: Stephane Charmot PHONE: (80) 673 6575

Asprait Content Percentage (BWA) 6.4 % (By Weight of Aggregate)

Recommended Starting emulsion shot rate = 0.20 gkl/yd² (Range 0.12 to 0.36 gal/yd

Recommended Starting emulsion shot rate = 0.81 l/m² (Range 0.6 to 1.2 l/m²)

		AGGREGAT	E GRADATIONS	- INCIVIDUAL AND BLEND
	Sample IC	Coarse	Fine	
	KMC Lab No.	2004.0134	2004.0195	Elend 12.5-mm Max Agg
	% in Blenc	70.0	30 0	100.0
	SIE/E			Limits
1"	25.00 mm	100	100	100 100 - 100
3/4'	19.00 mm	100	100	100 100 - 100
1/2'	12.50 mm	92	100	94 85 - 1DD
3/8	9.50 mm	49	100	84 60 - 80
#4	4.75 mm	4	100	99 39 - 19
#8	2.36 mm	1	97	30 25 - 32
#16	1.19 mm	1	63	20 15 - 22
#30	0.600 mm	1	38	12 10 - 18
#60	0.200 mm	1	22	2
#100	0 0.150 mm	1	14	6 5 - 11
#200	0 0.075 mm	0.0	9.5	0.4 3 0
	Aggregate Gsb	2.742	2.651	2.714
	FAA (T304)			47.0 46 min
81	Sand Equivalency (T176)		64 6	47 min
	Meth. Blue (TFST)		4.3	Report Uniy
	F & E, (3:1) (D4791)			28% max
	Micro-Deval (TF58)			Report Only
	LA. Altrasion (T96)	15.9		38% max
ushed Cuarse	ed Cuarse Aggregate, % (CT 205)			90% min
Crushed Fine	ushed Fine Aggregate,% (CT-205)			86% min
Wats	er Absorption (T84& 85)	1.8	2.8	

Gradation Surface Area Factor =	3.86 n	m²/kg	
Estimated Film Thickness -	12.0	12.0 µm 10.0 µ	
Maximum theoritical Specific Gravity =	2.637 e	om3	
Unconditioned Tensile Strength =	112.2	pel	Report Only
Conditioned Tensile Strength (1FT) =	97.1	pel	Report Only
Tenalic Otrongth Ratio -	30.6	76	Report Only
Draindown Test (CT 368) =	0.5 (*)	0	4 max
Film Stipping (CT 302) =	3 (*)	%	26 max

Mix Production and Handling

- The only special requirements are that the mixing temperatures for a BWC shall not exceed 177°C (351°F)
- Storage time shall not exceed 12 hours. A drain down test should be performed to ensure binder does not drain out of the mixture.
- All mixing plants should be calibrated.
- BWC mixes may be treated with an anti-stripping agent or lime if required.

Required Application Conditions

- Minimum air and pavement temperature requirements are 7°C (45°F) and rising, although it is recommended that the surface temperature be above 15°C (59°F).
- No freezing conditions are allowed in the first 24 hours, the emulsion-based tack coat requires about one day to fully cure.

Application of BWC - Emulsion

- The polymer modified emulsion membrane at a temperature between 40° and 85°C (104° and 185°F) at a rate of 0.6 to 1.2 liter/m2 (0.13 to 0.3 gal/yd2).
- The application rate should be adjusted according to the surface being covered.

Construction



Figure 4: Emulsion Membrane and Mix Spreading (11)

Figure 5: Freshly Laid BWC (11)

Construction

Rolling operation showing traffic control.

Trimming necessary. No overlap during construction due to emulsion membrane.

- Steel Drum tandem rollers are required for compacting a BWC.
- Rollers must be operated in static mode only.
- Usually two passes using a 12 to 15 ton roller is sufficient to properly seat the aggregates.
- Rolling must be carried out before the temperature, at mid layer of the mix, falls below 90°C (194°F).

Where has BWC been used in the Northwest:

2001 26,000 SY - SR 17 Moses Lake, WA,

2015 135,381 SY – Various Locations Snohomish County City of Mill Creek, City Of Marysville, and the City of Mukilteo, WA.

2015 12,000 SY- Bentley Road, City of Hillsboro.

2016 84,000 SY- Hwy 97 ODOT Bend, Oregon.

Joyce Barnes | *Program Planning / Pavement Management*

Snohomish County Public Works

3000 Rockefeller Ave., M/S 607 | Everett, WA 98201 425-262-2468 | joyce.barnes@snoco.org

Greg H. Hayes | Senior Engineering Technician

City of Hillsboro, Oregon | Public Works - Engineering

503-681-6152 | greg.hayes@hillsboro-oregon.gov

Teresa Gibson, P.E. | Traffic Analyst

Oregon Department of Transportation, Region 4

63055 N. Hwy 97, Bldg K, | Bend, OR 97703

541-388-6242