Back to Basics Asphalt Pavement for Preservation

John Hickey Asphalt Pavement Association of Oregon jhickey@apao.org

Goal:

Discuss the basics for asphalt pavements that are essential for preservation quality and longevity

ASPHALT PAVEMENT ASSOCIATION OF OREGON

Asphalt Pavement Basics

Materials & Mix

- Materials Selection
- Mix Design
- Structural DesignThickness design

Construction

- Best Practices
- QC & QA

Asphalt Pavement Basics Materials & Mix Design

3 stage process

- 1. Aggregate gradation & materials selection
- 2. Volumetric testing of selected gradation
- 3. Performance testing

Density

- Solids v. air voids
- What is the optimum density?

Materials & Mix Design **Primary Compaction**

Materials & Mix Design Secondary Compaction

Overestimating secondary compaction?

- Less density over pavement life
- Less density = less life

Underestimating secondary compaction?

- Rutting
- Bleeding

Materials & Mix Design Superpave gyratory compactor models compaction in lab

Materials & Mix Design Superpave gyratory compactor models compaction in lab

- Light traffic/no trucks = 50 gyrations
- Med. traffic & trucks = 75 gyrations
- High traffic & trucks = 100 gyrations
- Very high traffic (highways) = 125 gyrations

Aggregates

- NMAS
- Gradation

RAP & RAS

- Cost savings
- Sustainability
- Added stiffness
- **Asphalt Binder**

Additives

Materials & Mix Design Aggregates: critical factor for thinner preservation pavement lifts is NMAS

Lift Thickness/NMAS = 2

Lift Thickness/NMAS = 4

RAP & RAS

Why?

- Economic savings
- Environmental benefit
- Reduced demand for virgin materials

How do RAP mixes perform?

Materials & Mix Design Evaluation of LTPP Data (20-year study) 30% RAP v. All Virgin

	Virgin Performed Significantly Better than RAP	RAP Performed Significantly Better than Virgin	Insignificant Difference Between Virgin and RAP	RAP Performed Better Than or Equal to Virgin
Distress Parameter	(percentage)	(percentage)	(percentage)	(percentage)
IRI	42	39	19	58
Rutting	33	29	38	67
Fatigue Cracking	29	10	61	71
Longitudinal Cracking	15	10	75	85
Transverse Cracking	32	15	53	68
Block Cracking	3	1	96	97
Raveling	7	15	78	93

Table 1. Comparison of distress measurements for companion virgin and RAP sections

FHWA Publication No.: FHWA-HRT-11-051

FHWA LTPP:

"In summary, the performance data from LTPP SPS-5 shows that RAP and virgin HMA mixes used in overlays of flexible pavements showed approximately the same performance across a range of climates, traffic, and existing pavement conditions over a period of up to 17 years."

Asphalt Binder

- Climate High & Low Pavement Temp
- Volume of Traffic
- Speed of Traffic
- Recycled Materials Content
- Polymer Modified Binder?

PG 64-22 PG 64-28 PG 70-22 PG 70-22 ER

When should you use polymer modified binders?

- What are they?
- What do polymers do?
- Are they needed?
- How much do they cost?
- Is the cost worth it?

What are polymers?

- Many small connected molecules
- Usually "SBS": Styrene-Butadiene-Styrene
- Elastomer/hard rubber
- High elasticity over repeated heating and cooling cycles

Polymer cost/benefit

Benefit: recovery after loading

Polymer cost/benefit

Benefit: recovery after loading

Materials & Mix Design Polymer cost/benefit

- Benefits:
 - Reduced susceptibility to moisture damage
 - Improved rutting resistance
 - Reduced fatigue cracking
 - Mitigate thermal cracking
 - Resist top-down cracking

Polymer cost/benefit

- Benefits
 - OSU (Coleri, 2017): "significantly higher crack resistance"
 - NCAT (Timm, 2012/2013): "over an order of magnitude increase in fatigue life"
 - ARA (Von Quintus, 2004): For overlays
 - "25 to 100% increase in service life"
 - "3 to 10 years increase in service life"

Polymer cost/benefit

- Cost
 - Current Oregon Cost: \$100 more/liquid ton
 - Liquid Binder \$10/ton = Mix \$0.50/ton
 - Polymers = \$5 more per mix ton

Additives

- Hydrated Lime
- Liquid anti-strip
- Warm mix
- Warm mix & anti-strip
- Rejuvenators

Warm mix & anti-strip example

Evotherm P25 - benefit depends on dose

- Compaction aid
- Temperature reduction (20-50° F)
- Improved aggregate/binder adhesion

Uses

- Late season paving compaction aid
- Long hauls
- Reduced fuel use

Stage 2 – Design Asphalt Binder Content

- Test selected materials with different asphalt binder contents
- Select asphalt binder content that gives 4% air voids after compacted in gyratory compactor
- Minimum 4 asphalt contents

Materials & Mix Design Stage 2 – Design Asphalt Binder Content

ASPHALT PAVEMENT ASSOCIATION OF OREGON Materials & Mix Design Stage 2 – Design Asphalt Binder Content • Must evaluate other volumetric properties (e.g., VMA & dust to effective)

Materials & Mix Design Past APAO Presentations - improve durability: • "Specify selecting binder content at 3.5% air voids"

 "Require additional compaction"

Improve fatigue response

- To enhance fatigue response use higher binder content in bottom lifts
- Select binder content at 3.5% air voids instead of the surface course standard 4.0%
- To improve density/compaction construct thick base lifts (3" minimum)

Materials & Mix Design Past APAO Presentations - Improve durability: • "Specify selecting binder content at 3.5% air voids"

 "Require additional compaction"

Materials & Mix Design Recent ODOT Research:

- SPR734 (Williams, 2015): "reduce design air voids from 4% to 3.5% which would effectively increase the design binder content of mixes by about 0.25%"
- SPR785 (Coleri, 2017):
 - Increased binder "can create significant savings and improve pavement longevity"
 - Increased density "can potentially create a significant improvement in the cracking resistance of asphalt mixtures"

Improve performance of preservation pavements by:

Improve performance of preservation pavements by:

Design for correct traffic level

Improve performance of preservation pavements by:

Design for correct traffic level

Binder grade

Improve performance of preservation pavements by:

Design for correct traffic level

Binder grade

Polymers

Improve performance of preservation pavements by:

Design for correct traffic level

Binder grade

<u>Polymers</u> <u>Binder Content</u>

Improve performance of preservation pavements by:

Design for correct traffic level

<u>Binder grade</u>

<u>Polymers</u> <u>Binder Content</u>

Compaction

Pavement Structural Design

- Proper NMAS for lift thickness
- Increase thickness whenever possible
- Lower air voids (more density)
- Increase binder content
- Polymers in top lift for high loading areas

Construction Best Practices

- Surface preparation
- Asphalt placement
- Quality control

Surface Preparation

Surface preparation is how we ensure bonded layers.

- Proper milling, if needed
- Clean existing surface
- Proper tack coat

Bonding Demonstration

(courtesy of FHWA/AI Tack Workshop)

Unbonded

Fully Bonded

Triple Wrap

5/8" Spacing

Standard milling drum FB 2000_LA 16

Advance speed: 16 m/min

Standard milling drum FB 2000_LA 16 Advance speed: 8 m/min

FINE MILLING

Standard milling drums with a spacing of 15 mm are eminently suitable for removing complete road pavements.

The fine milling drums with a spacing of 8 mm are ideal for treating the surface of pavement courses.

MILLING PROBLEMS

BAD TEETH AND HOLDERS

MILLING PROBLEMS

MILLING PROBLEMS

JUST RIGHT

Milling Considerations

- Existing distresses
- Existing layer thicknesses
- NMAS of existing pavement
- Standard or fine or micro?
- Condition of milling equipment
- Speed of machine & cutter drum
- Resulting pattern
- Thinlays

Surface Preparation

Whether milled or not, what is an essential step before tack?

Diluting Tack

Advantages

- More uniform application
- Fewer plugged nozzles

Disadvantages

- Need to accurately calculate application rate
- Longer time to break

Bonding Demonstration

(courtesy of FHWA/AI Tack Workshop)

Unbonded

Fully Bonded

Pavement Preservation Case Studies

SAFE. SMCOTH. DURABLE.

Dense-graded asphalt designed to:

- Last
- Resist Cracking
- Be Thin (minimize materials)

- Superpave Mix Design
- Smaller aggregates (3/8 or 1/4 inch NMAS)
- Softer binders
- Polymer modified binders if needed
- Max gyrations typically 80
- Lift thickness 3/4 inch to 1.5 inches
- Compaction

NCAT Test Track

- 1.7 mile oval
- Loaded tractor trailers

• 10 million ESALs every 3 years

NCAT Test Track, Mississippi test sections 2003

- 4.75 mm NMAS
- 3/4-inch thickness
- 50 gyrations
- 6.1% asphalt binder content
- PG 76-22 & 67-22
- 48 million ESALs

NCAT Test Track, Mississippi test sections 2003 Photo October 2017

Murray Boulevard, Washington County, OR 2001 Paving – Baker Rock Resources

2,700 feet of 1-inch lift

Murray Boulevard 2001 Paving

- L3, 3/8-inch NMAS mix, PG 64-22, no RAP/RAS
- \$40/ton, \$15,488 per lane mile = \$2.20/SY
- \$0.14 per SY per year unbeatable!

Murray Boulevard 2007 Paving

- Baker Rock Resources
- Over 2 miles, 1-inch lift, 4,797 tons
- L3, 3/8-inch NMAS mix, PG 64-22, RAP

Murray Boulevard 2007

- Mix Design Asphalt Binder Content = 6.1%
- Production Asphalt Binder Content = 6.6 7.0%
- \$46.70/ton, \$2.55/SY
- \$0.26 per SY per year

<u>THINLAYS</u> Polk County, OR 2010/2011 Paving – 10-12 Thinlays 1/4-inch & 3/8-inch NMAS (over 7% binder) 75 gyrations, PG 64-22, No RAP

Polk County, Wigrich Road & Wells Landing (2010) 1/4-inch NMAS mix placed 3/4 inch thick Photos October 2017

Polk County, Bethel Heights Road (2010) 1/4-inch NMAS mix placed at 3/4-inch thickness Photo October 2017

Halls Ferry Rd

Polk County, Hoffman Road (2010) 1/4-inch NMAS, placed 3/4 inch in thickness

<u>THINLAYS</u>

Polk County 2010 Thinlays

- 7 years almost no distress
- Estimated life 12-15 years
- 2010: \$80/ton, \$5.00/SY
- Assume 14 year life: \$0.36 per SY per year

<u>THINLAYS</u>

Dripping Springs Texas – RM12 (2012)

Dripping Springs Texas – RM12 Chip seal: aggregate loss & noise complaints

Chip Seal Loudness: 109.3 dBA Thin Overlay Loudness: 96.3 dBA

10 dBA: doubling of perceived loudness

- ✓ Increased Service Life
- ✓ Waterproof
- ✓ Improved Ride
- ✓ Quiet
- ✓ No Curing
- ✓ Sustainable
- ✓ Preferred by Cyclists, Pedestrians and Windshields
- ✓ Improve Strength
- ✓ Local Experience

Jim Ryan | The Oregonian/OregonLive

Oregon Department of Transportation contract workers hit, June 6, 2017

Safety Culture

- Increased separation
- Requests for police presence
- Improved message boards
- Responsibility not delegated
- Speed reductions
- Day paving
- New technology
- Solicit contractor suggestions

