PAVEMENT REHABILITATION TECHNIQUES: Applying Reasonableness & Avoiding Pitfalls

MIKE MALONEY, PE

Develop recommendations that are:

- Cost effective solutions
- Feasible
- Managed risk

Goals:

Manage Expectations

- Communication Aligning Goals
- PMS Output
- Expected Performance

Methodology:

Reconnaissance and As-Built Review

- Testing and exploration plan
- Traffic control plan

Methodology:

Field Exploration and Testing

- Number, location and type of explorations
- FWD testing frequency
- GPR
- Visual survey

Methodology:

Traffic Loading Estimate Peak Hour Counts ADT/percent trucks Classified Counts Tube counts Video counts Transit Buses

Methodology:

Pavement structural analysis

- Analysis units and backcalculation models
- Backcalculation analysis
- Overlay and inlay analysisAASHTO input parameters

Methodology:

Project Recommendations

- 1. Structural requirements
- 2. Grade constraints
- 3. Reflective cracking

We can't solve problems with the same thinking we used when we created them

Typical Structural Improvements

Overlay is placed in 2 to 3-in. lifts above the existing pavement surface with an increase in grade equal to the overlay thickness.

Inlay is removal of a portion of the existing asphalt concrete (by milling) and replacement with new asphalt concrete, with no increase in grade.

Mill and Overlay is removal of a portion of the existing asphalt concrete and placement of new asphalt concrete that results in an increase in grade.

Partial Depth Reconstruction is removal of the entire thickness of existing asphalt concrete and placement of new asphalt concrete on top of the existing aggregate base layer.

Full Depth Reconstruction is replacement of the existing pavement structure with a new pavement structure and may include construction on compacted or undisturbed subgrade, aggregate or mechanical stabilization, treated subgrade and full depth reclamation (FDR).

Structural Strengthening - Overlay Overlay **Before Rehab Traffic Loading** New Old ld O Pavement Pavement Pavement 10-in. 10-in. 12-in. Structurally Equivalent 4.20 **Structural Deficiency** 4 Overlay Due to Traffic (\triangle 0.84) 2-in. 3.36 3 3 **Structural** Number 2 2 Structural New Number **Pavement** Old 1 1 **Pavement** Ω Ω

Structural Strengthening - Inlay

Structural Strengthening – Mill + Overlay

Methodology:

- Project Recommendations
 - 1. Structural requirements
 - 2. Grade constraints
 - 3. Reflective cracking

We can't solve problems with the same thinking we used when we created them

Methodology:

- Project Recommendations
 - 1. Structural requirements
 - 2. Grade constraints
 - 3. Reflective cracking

We can't solve problems with the same thinking we used when we created them

Reflective Cracking

Reflective Cracking

Case Study

Avoiding Pitfalls When Moving From PMS Output \rightarrow Project Recommendations

PMS Output

Segment	Project Location	Project Year	Street Classification	PCI	Decision Tree M&R Recommendation
7	Alameda	2016	Collector	62	2" Overlay
5-6	Aviation	2016	Collector	63	2" Overlay
1-3	Edenbower	2016	Arterial/ Collector	63	2" Overlay
4	Rennan	2016	Collector	62	2" Overlay
8	Stewart	2016	Arterial	58	3-4" Grind/Inlay

Visual Survey

FWD Testing - Edenbower

FWD Results - Edenbower

Figure 1E - 9-Kip Deflection Profile

GRI

FWD Analysis - Edenbower

Test No.	Test Station	Dir	Unit	D0, mils	Controlling Overlay, in.	Controlling Overlay above the Milled Surface with 2-in. of Milling, in.
1	0+00	SB	Repair	28.93	4.57	5.77
2	1+ <mark>5</mark> 0	SB	Repair	21.03	2.32	3.98
3	3+00	SB	1	15.41	0.63	2.49
4	4+50	SB	1	17.29	0.90	2.40
5	6+00	SB	1	21.76	1.85	3.33
6	7+79	SB	Repair	31.02	4.40	5.66
7	9+01	SB	1	22.92	3.07	4.49
8	10+50	SB	2	15.49	0.28	2.36
9	12+00	SB	2	16.01	0.60	2.79

FWD Analysis - Edenbower

Statistical Summary									
Structural Unit #	From	То	Average D0, mils	Average Controlling Overlay, in.	Average Controlling Overlay above the Milled Surface with 2- in. Mill Depth, in.				
Repair	0+00	12+00	25.05	3.18	4.59				
1	0+75	9+75	18.04	1.64	3.31				
2	10+50	12+00	16.44	0.59	2.40				

Rehabilitation Recommendation

- Localized Dig Out Repairs
 5" AC
- 2" Mill
 - Tapered from 2" at the edge of travel lane to 3" at the curb
- 3" Overlay This will raise the grade 1" in the travel lanes

FWD Testing - Alameda

FWD Testing - Alameda

Figure 1H - 9-Kip Deflection Profile

GRI

FWD Analysis - Alameda

					Overlay Thickness above Existing	Overlay Thickness above the Milled surface with 3.5-inch
Test No.	Test Station	Dir	Unit	D0, mils	Pavement, in.	milling Depth
1	0+20	EB	1	7.23	zero	zero
2	1+20	EB	1	8.81	zero	zero
3	2+20	EB	1	<mark>5.9</mark>	zero	zero
4	2+89	EB	1	<mark>6.0</mark> 3	zero	zero
5	4+20	EB	1	7.42	zero	zero
6	5+20	EB	1	5.1	zero	zero
7	6+20	EB	1	5.45	zero	zero
8	7+20	EB	1	3.52	zero	zero
9	8+20	EB	1	7.21	zero	zero
10	8+20	WB	1	6.68	zero	zero

FWD Analysis - Alameda

Statistical Su	mmary					
						Average Overlay
						above the Milled
Structural				Average	Average Overlay ,	Surface (3.5-in. Mill
Unit #	From	То	Dir	D0, mils	in.	Depth), in.
1	0+20	8+20	Both	5.79	zero	zero

Rehabilitation Recommendation

• No Strengthening Required

 Surface Rehabilitation Required due to Extensive Top-Down Random Cracking

• 4" Mill

4" Inlay
2- 2" Llfts

Case Study

Applying Reasonableness in Your Project Recommendations

30th Ave

4- Lane, 2-Way AC Surface Roadway

30th Ave

Visual Survey

FWD & Coring

FWD Results

Rehabilitation Recommendation

Outer Lanes

 Partial Depth Reconstruction due to Significant % of Fatigue Cracking

Inner Lanes

- No Strengthening Required
- 2" Overlay/Inlay to Rehabilitate the Surface

Wilshire Dr.

Wilshire Dr.

Visual Survey

Coring

FWD Results

GR

Rehabilitation Recommendation

Western Portion

 Reconstruction due to Significant % of Fatigue Cracking and Patching

Eastern Portion

- 2" Mill
 - Tapered from 2" at the edge of travel lane to 3" at the curb
- 3" Overlay This will raise the grade 1" in the travel lanes

Thank You!

MIKE MALONEY, PE mmaloney@gri.com LINDSI HAMMOND, PE lhammond@gri.com

(503) 641 - 3478

