Asphalt Paving Inspection

John Hickey
Asphalt Pavement Association of Oregon
jhickey@apao.org

Identify:

- Areas where inspectors can positively influence paving projects
- Problem areas in asphalt pavement inspection

Expectations:

- Willingness to participate
- Agree that we may not agree

Knowledgeable paving inspectors are important because:

Setting Clear Expectations

- Planning Pre-Project
- Communication
 - Confirm understanding
- Topics for Communication
 - Pet peevs
 - Roles/authority
 - Plans and specifications order of precedence
 - Documentation what needs to be documented and who is going to do it

•							

Roles/Authority

- Inspectors May
 - Inspect
 - Reject materials
 - Temporarily suspend work
 - Act within the PM's grant of authority
- Inspectors May Not
 - Accept Work
 - Change/waive contract requirements
 - Give instructions contrary to contract

Roles/Authority

- Superintendents Must
 - Be present while paving
 - Have radio or cell phone
 - Have authority to execute orders and control crew
 - Coordinate work
 - Provide access
 - Communicate expectations and schedule
 - Be point of contact for subcontractors

Documentation

- Good Ideas
- Bad Ideas

Job Mix Formula

The ______, the ______, and the ______ must have and

cherish the JMF.

OREGON DEPARTMENT OF TRANSPORTATION MATERIALS LABORATORY 800 AIRPORT ROAD SE

SALEM, OR 97301-4798

503.986.3000 Fax: 503,986,3096

Contract No.: C99989 EA: F.A. No Lab No. 13-MD0147 Amendment 1 Date: Project Name: Riverbend S & G (Private Mix Design) Amendment 2 Date: Highway: County: Amendment 3 Date: End MP: Begin MP: Contractor: Use: Level 3 1/2" Dense Mix Project Manager: **BITUMINOUS MIX DESIGN REVIEW** Lab Name:

APAO

Certified Mix Design Technician: Kevin Berklund

Mix Producer:

Riverbend S&G

Contractor Mix Design No.: Transferred from Lab No.:

KB-2013-01

Asphalt Supplier: McCall Asphalt Grade:

PG64-22

Antistrip Information:

%

Gb (60%60° F): 1.030

'Dryback' Rices are required for production testing.

Stockpile Information RAP Stockpile Size 1/2" - #4 #4 - #8 #8 - 0 27-032-2 27-032-2 27-032-2 Stkpile Stockpile Source 15.0 25.0 30.0 30.0 0.0 0.0 0.0 Stockpile Percentage Bulk Specific Gravity (Gsb) 2.614 2.556 2.500 2.627 0.100 0.100 0.100

Sieve ⁹		s	Paving Course		% Asphalt by Wt.		Maximum Specific		
3/4" (19mm)	********	100	Wearing	V	of Mixture (Pb)		Gravn	ty (Gmm):	
1/2" (12.5mm)		99	Base			6.2		2,408	
3/8" (9.5mm)		89	Leveling	\mathbf{Z}					
/4" (6.25mm)	*******	71	Temporary	\mathbf{Z}					
lo. 4 (4.75mm):	********	60							
lo. 8 (2.36mm):	A	41		VMA:	15.6		VFA:	74	
lo. 16 (1.18mm):		26	Percent A/C i	in Rap:	5.9	Combined Aggregate	Gravity (Gsb):	2.568	
lo. 30 (0.60mm):	******	19	Number of Gyr	ations:	80	Gmb Sa	ımple Weight:	4570	
lo. 50 (0.30mm):	************	13	Void Targe	et (Va):	4.0	Mixing	Temp Range:	305-315 F	
lo. 100 (0.15mm):		9	Tensile Strength	Ratio:	86	Placement	Temp Range:	285-293 F	
lo. 200 (0.075mm)		6.7							

Compliance Statement:

Based on the information submitted for review, this mix design does comply with specifications.

Total Lab Charges:

\$0.00

10 12 42 9 2 Date

C: Files; FHWA; Project Manager; Mike Stennett, Pavements; Bituminous; Region QA Coord; Larry Itg, Pavements

Clear Expectations

- Planning Pre-Project
- Communication
 - Confirm _____
- Topics for Communication
 - Pet peevs
 - Roles/authority
 - Plans and specifications order of precedence
 - Documentation what needs to be documented and who is going to do it

•							

Quality in Paving

What is the number 1 indicator of a pavement that will last?

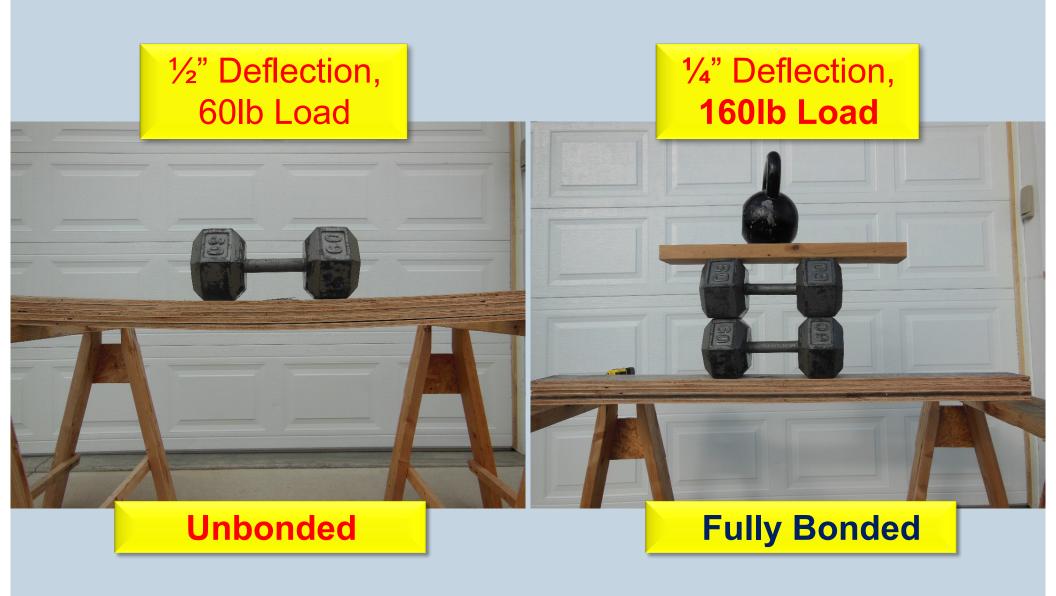
- Balanced production and laydown operations
- Site preparation
- Mix type
- Truck loading
- Hauling practices
- Truck to paver exchange method
- Mix temperature
- Laydown practices
- Types of rollers
- Weather/temperature
- Longitudinal joint construction
- Transverse joint construction
- Segregation
- Smoothness
- Compaction

Quality in Paving

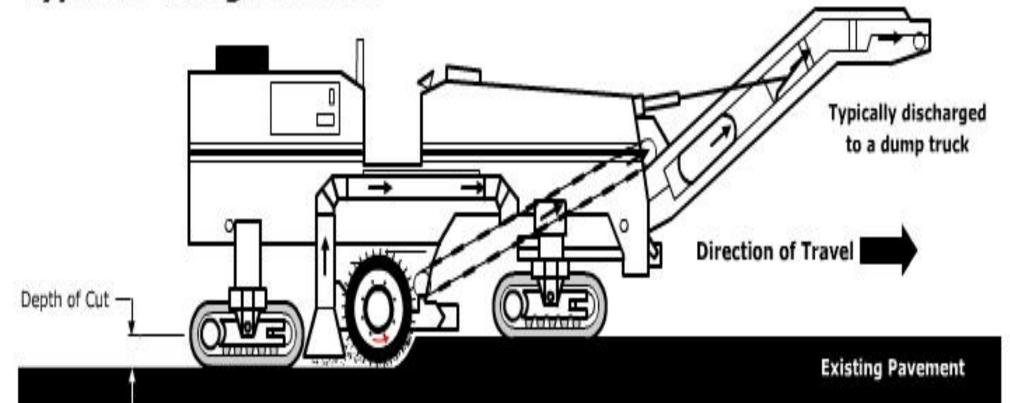
What will give us better quality at lower cost on average?

- An inspector who demands strict adherence to the specification.
- An inspector who understands the fundamental principles of paving and will engage in communication (and confirm understanding) over why the specification may not fit a certain context.

Site Preparation


Site preparation is important because it is how we ensure bonded layers.

- Clean existing surface
- Proper milling
- Proper tack coat

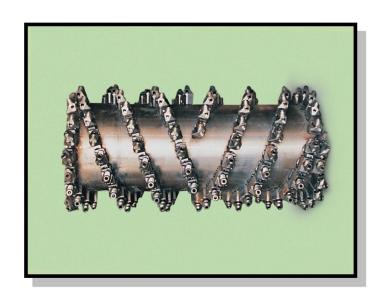


Bonding Demonstration

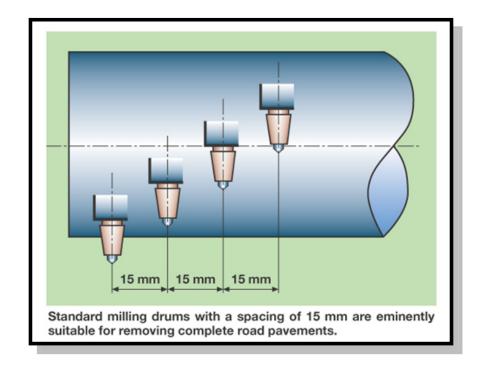
(courtesy of FHWA/AI Tack Workshop)

Typical Milling Machine

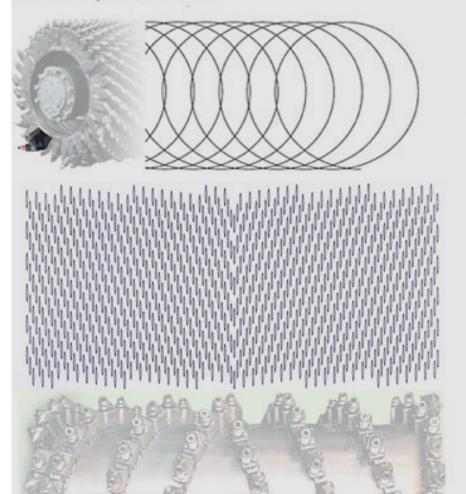
Tracks

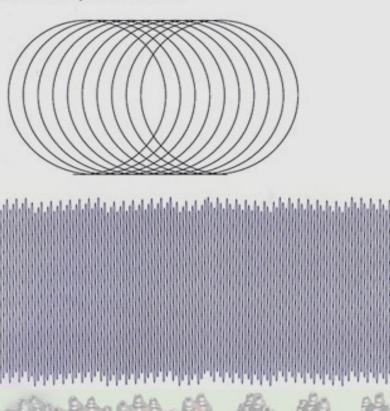

Vacuum

Cutter Drum


Conveyor Belts

Triple Wrap


5/8" Spacing

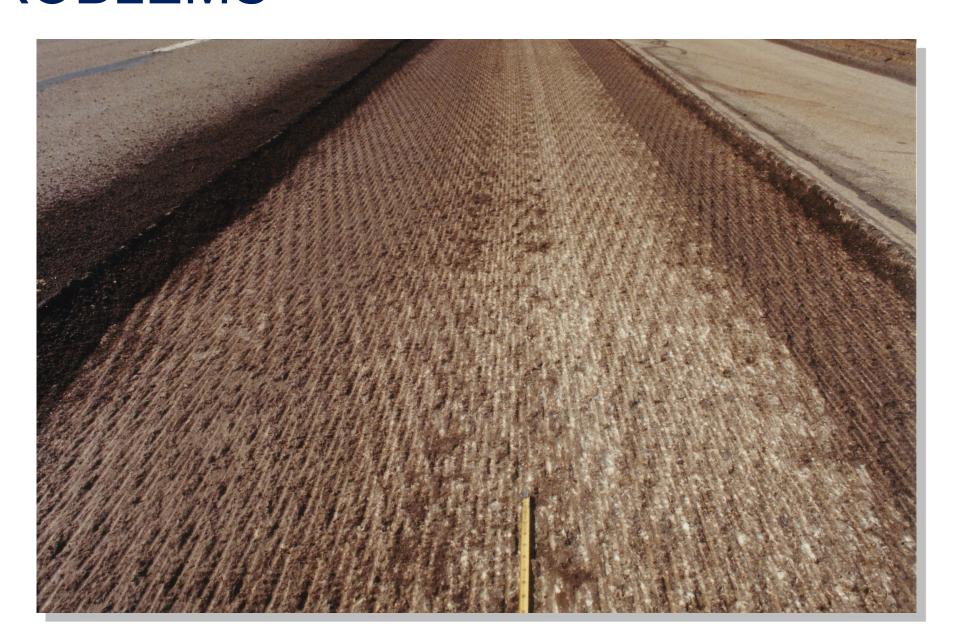

Standard milling drum FB 2000_LA 15

Advance speed: 16 m/min

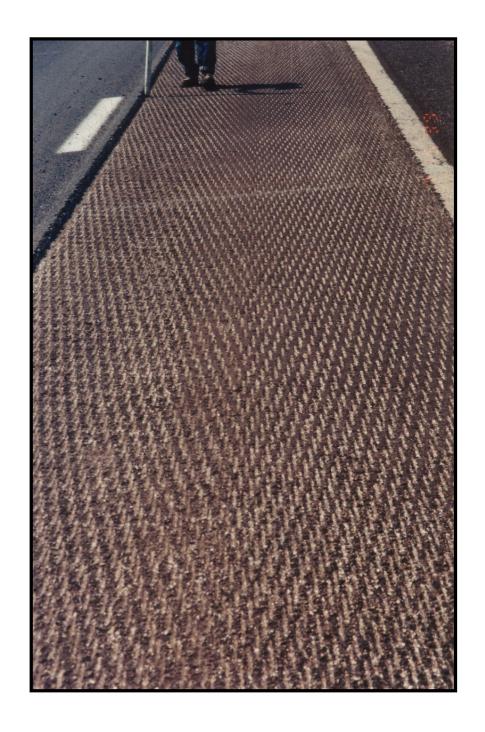
Standard milling drum FB 2000_LA 15

Advance speed: 8 m/min

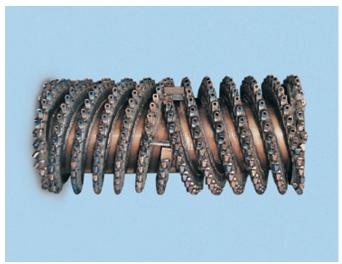
MILLING PROBLEMS

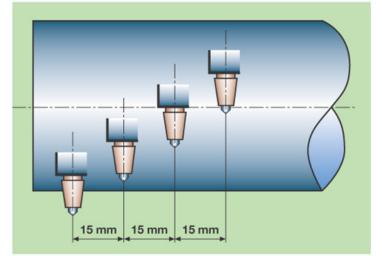


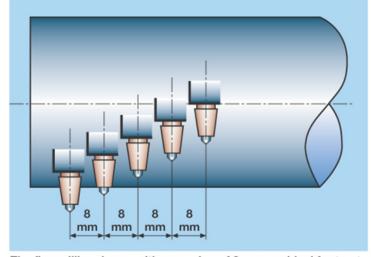
BAD TEETH AND HOLDERS


MILLING PROBLEMS

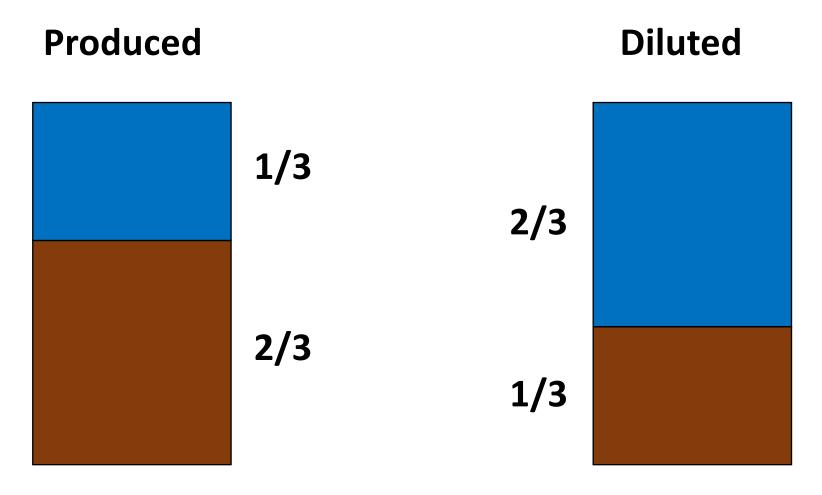
TOO FAST


MILLING PROBLEMS


JUST RIGHT


FINE MILLING

Standard milling drums with a spacing of 15 mm are eminently suitable for removing complete road pavements.



The fine milling drums with a spacing of 8 mm are ideal for treating the surface of pavement courses.

Tack Coat

What is it?

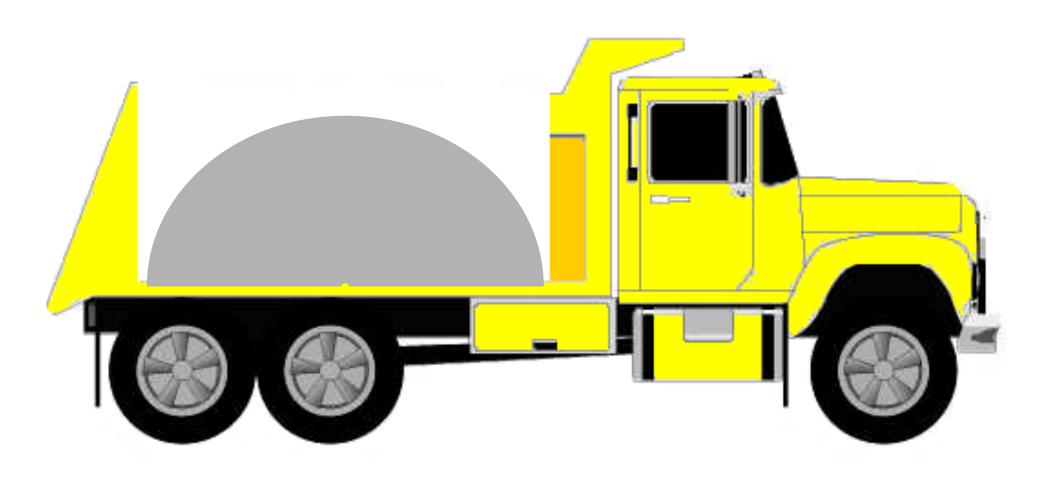
Diluting Tack

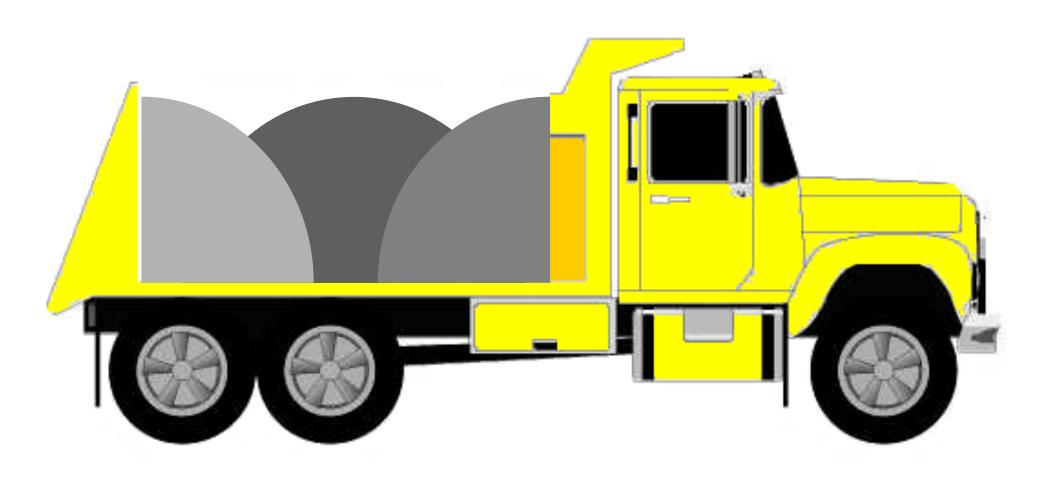
Advantages

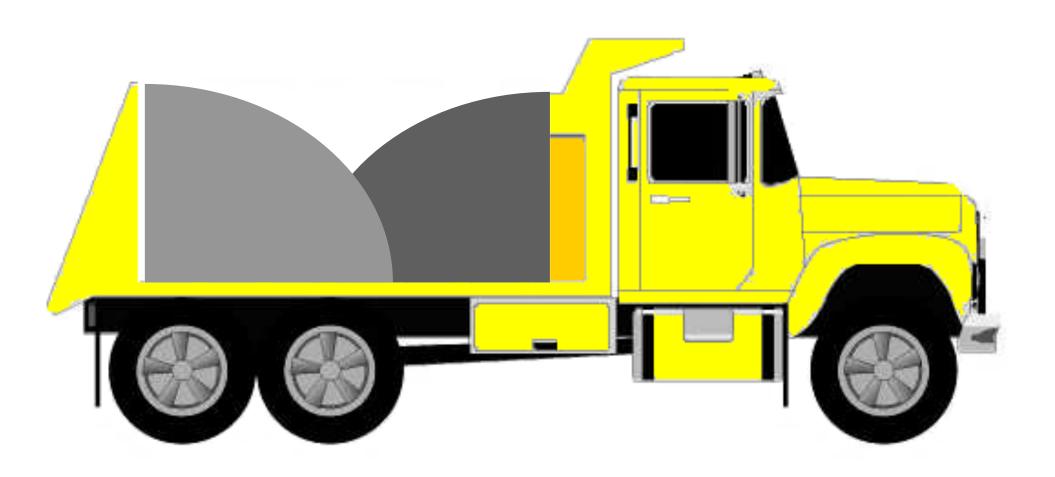
- More uniform application
- Fewer plugged nozzles

Disadvantages

- Need to accurately calculate application rate
- Longer time to break


ASPHALT PAVEMENT ASSOCIATION OF OREGON





If an inspector notices a truck loading issue what should the inspector do?

Compaction

Compaction:

- Bulk Density ÷ Theoretical Max Density
- Bulk Density: Nuclear gauge or cores
- Theoretical Max Density: Lab results (e.g., MAMD)

Inspectors should _____ the numbers

Compaction Questions for Inspectors

- Where is the density technician?
- Does density tech have JMF?
- Is density tech communicating?
- Does the density tech know the numbers behind <u>each</u> roller?
- Do the numbers make sense? Consistent?
- Is the gauge measuring below new pavement?
- If numbers are unexpected, can the contractor get a 2nd gauge?

Compaction

What if one test result is below the minimum?

TEST NUMBER 3-2-1 3-2-2 3-2-3 3-2-4 3-2-5										
TEST LOCATION 203+64 205+46 206+81 211+78 215+64	TEST NUMBER		3-2-1	3-2-2	3-2-3	3-2-4	3-2-5			
STATION 203+64 205+46 206+81 211+78 215+64 DISTANCE LT. OR RT. 3.4 Lt 1.2 Lt 11.0 Lt 8.8 Lt 6.1 Lt DIST BELOW LIFT 2/2"/2" 2/2"/2" 2/2"/2" 2/2"/2" 2/2"/2" DENSITY Ib/ft³ 1 143.2 144.7 144.9 144.4 143.7 Max difference 2.5 lb/ft² 2 142.8 144.1 145.1 144.8 144.1 AVERAGE DENSITY (LINE 1+ LINE 2) / 2 3 143 144.4 145 144.6 143.9 CORE TO NUCLEAR LINE 3+ 2 2 2 2 2 2 CORPELATION 4 143 144.4 145 144.6 143.9 X MAMO TARGET DENSITY Ib/ft³ 5 156.6 156.6 156.6 156.6 3 2 2 2 2 2 2 2 2 DENSITY Ib/ft³ 5 156.6 156.6 156.6 156.6 3 2 2 2 2 2 2 2 COMPACTION FOR INDIVIDUAL 158.5 156.6 156.6 3 2 2 2 2 2 COMPACTION FOR INDIVIDUAL 158.5 156.6 156.6 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 6 6 6 5 6 6 6 6 5 6 6 6 5 6 6 6 5 6 6 6 5 6 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 5 7 7 7 7 7 7 7 7 7			11/9/2011	11/9/2011	11/9/2011	11/9/2011	11/9/2011			
OF CENTERLINE FEET 3.4 Lt 1.2 Lt 11.0 Lt 8.8 Lt 6.1 Lt	(STATION)		203+64	205+46	206+81	211+78	215+64			
DENSITY b/ft3	OF CENTERLINE FEET		3.4 Lt	1.2 Lt	11.0 Lt	8.8 Lt	6.1 Lt			
Max difference 2.5 lb/ft² 2 142.8 144.1 145.1 144.8 144.1 AVERAGE DENSITY (LINE 1+ LINE 2) / 2 3 143 144.4 145 144.6 143.9 CORE TO NUCLEAR CORRELATION 4 143 144.4 145 144.6 143.9 X MAMD TARGET DENSITY 1b/ft² 5 156.6 156.6 156.6 156.6 3 COMPACTION FOR INDIVIDUAL TESTS (LINE 3 OR 4 / LINE 5) X 100 6 91.3% 92.2% 92.6% 92.3% 91.9% SUBLOT OR SECTION X			2/2"/2"	2/2"/2"	2/2"/2"	2/2"/2"	2/2"/2"			
AVERAGE DENSITY	DENSITY lb/ft³	1	143.2	144.7	144.9	144.4	143.7			
CORE TO NUCLEAR LINE 3+ CORRELATION 4 143 144.4 145 144.6 143.9		2	142.8	144.1	145.1	144.8	144.1			
CORRELATION 4 143 144.4 145 144.6 143.9		3	143	144.4	145	144.6	143.9			
TARGET DENSITY b/ft ³ 5 156.6		4	143	144.4	145	144.6	143.9			
TESTS (LINE 3 OR 4 / LINE 5) X 100 6 91.3% 92.2% 92.6% 92.3% 91.9% SUBLOT OR SECTION %	X MAMD TARGET DENSITY lb/ft ^a	5	156.6	156.6	156.6	156.6	156.6			
SUBLOT OR SECTION % PROURED 92.0% 92.1%		6	91.3%	92.2%	92.6%	92.3%	91.9%			
	SUBLOT OR SECTION % LINE 6 AVERAGE REQUIRED 92	2.0%	92.1%							
REPRESENTS MATERIAL INCORPORATED										
FROM STATION 203+08 TO STATION 217+24										
FROM OFFSET CL TO OFFSET 12 ft Lt CL										

- Sampling method and location
- Testing operator and equipment variation
- Material natural variations in aggregate and binder
- Existing Surface flat and strong or not
- Construction consistency in production and placement procedures
- Environmental Conditions changes

- Individual test variability is about 1.5%
- Most tests should be within 1.5% of the average
- What if tests are much closer to average?
- What if tests are much greater?
- Easy compaction means _ _ _ _ _ _

- Individual test variability is about 1.5%
- Most tests should be within 1.5% of the average
- What if tests are much closer to average?
- What if tests are much greater?
- Easy compaction means _ _ E _ _ _ E

- Individual test variability is about 1.5%
- Most tests should be within 1.5% of the average
- What if tests are much closer to average?
- What if tests are much greater?
- Easy compaction means <u>O E _ _ _ </u>

- Individual test variability is about 1.5%
- Most tests should be within 1.5% of the average
- What if tests are much closer to average?
- What if tests are much greater?
- Easy compaction means <u>O E _ G</u> <u>O _ O _ G</u>.

- Individual test variability is about 1.5%
- Most tests should be within 1.5% of the average
- What if tests are much closer to average?
- What if tests are much greater?
- Easy compaction means <u>S O E _ _ G</u>
 <u>S _ O _ G</u>.

- Individual test variability is about 1.5%
- Most tests should be within 1.5% of the average
- What if tests are much closer to average?
- What if tests are much greater?
- Easy compaction means <u>S O _ E _ _ _ G</u>
 <u>S P O _ _ _ O _ _ O G</u>.

- Individual test variability is about 1.5%
- Most tests should be within 1.5% of the average
- What if tests are much closer to average?
- What if tests are much greater?
- Easy compaction means <u>S O _ E _ _ _ G</u>
 S P O _ _ Y _ _ O _ G.

- Individual test variability is about 1.5%
- Most tests should be within 1.5% of the average
- What if tests are much closer to average?
- What if tests are much greater?
- Easy compaction means <u>S O _ E _ _ _ G</u>
 S PRO _ _ Y _ RO _ G.

- Individual test variability is about 1.5%
- Most tests should be within 1.5% of the average
- What if tests are much closer to average?
- What if tests are much greater?
- Easy compaction means <u>SOEE__NG</u>
 <u>SPRO__YRONG</u>

- Individual test variability is about 1.5%
- Most tests should be within 1.5% of the average
- What if tests are much closer to average?
- What if tests are much greater?
- Easy compaction means <u>SOMETHING</u> <u>ISPROBABLY WRONG</u>.

Quality

- Surface prep
 - Cleaned, consistent mill pattern, good tack coverage
- Truck loading
 - Don't ignore because segregation is bad
 - More than 1 dump in each truck
- Compaction
 - Most important indicator of quality
 - Using correct specific gravities is critical
 - Variability is a reality and must be understood