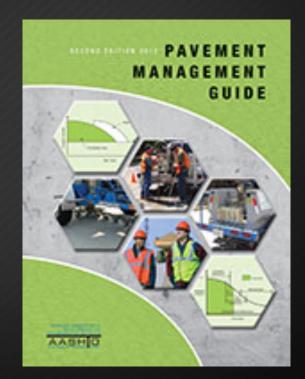
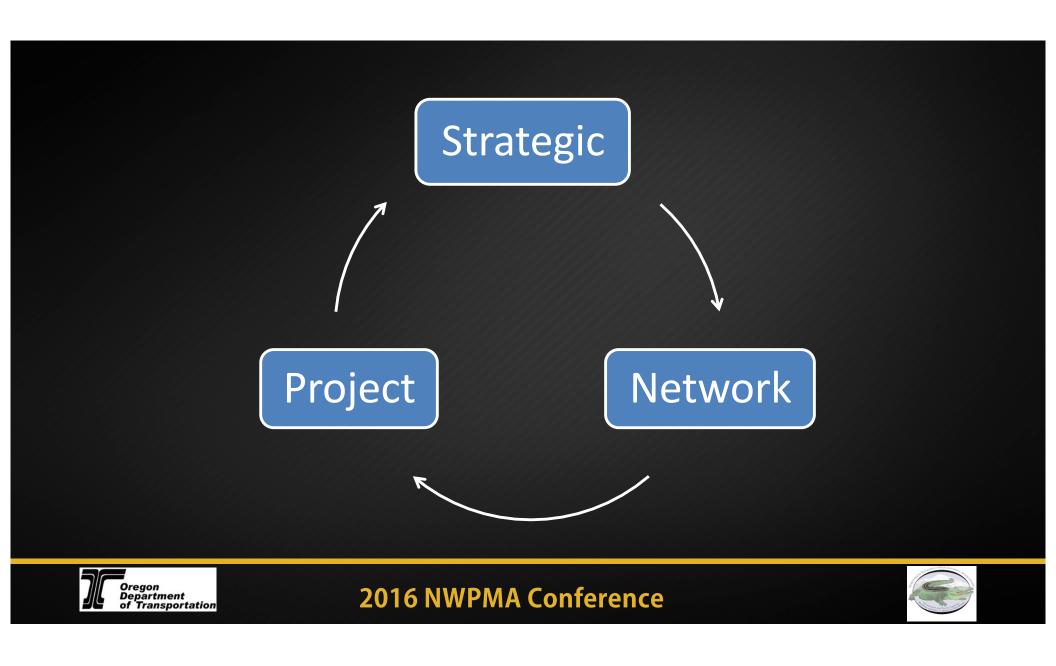
Examples of Decision Support Using Pavement Management Data

John Coplantz, PE Pavement Management Engineer Oregon Department of Transportation _{October 27, 2016}



Decision Levels*

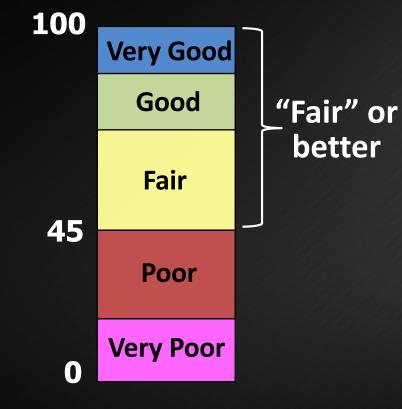
- Strategic
- Network (Tactical)
- Project (Operational)


*Pavement Management Guide, 2nd Ed. AASHTO, 2012

Level	Audience	Types of Decisions	Apply to	Detail
Strategic	Politicians Commission Agency Heads	Perf. Meas./Targets Funding Impacts Pavement Strategy	Entire Network	Low
Network	Engr. Mgrs. District Mgrs. Planning Asset Mgrs.	Funding Allocations Pavement Workplan Project Selection Initial Scoping	Entire Network or Subset	Mod.
Project	Project and Maintenance staff	Scope refinement Thickness design Materials selection	Project or corridor	High
Oregon Department of Transportat	ion 2016	NWPMA Conference		

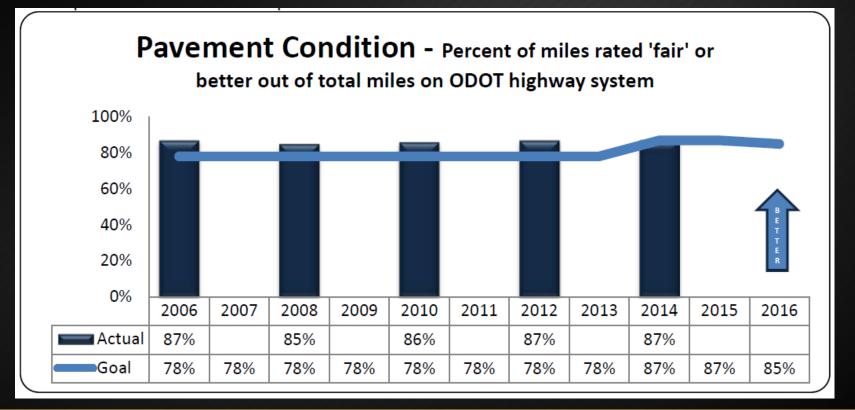

STRATEGIC LEVEL

What is the condition of our roads?


Measuring Pavement Conditions

Pavement Rating

- 100% Survey
- Score each PMS section
- Sum miles in each category
- Calculate % Fair-or-better
 mileage


STRATEGIC LEVEL

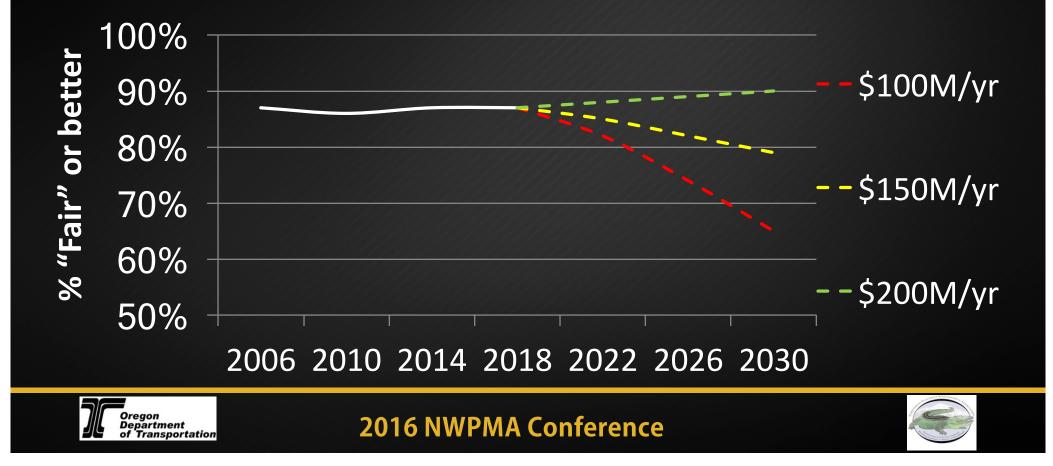
- What is the condition of our roads?
- Are they getting better or worse?

Performance Measures and Targets

2016 NWPMA Conference

Oregon

Department of Transportation

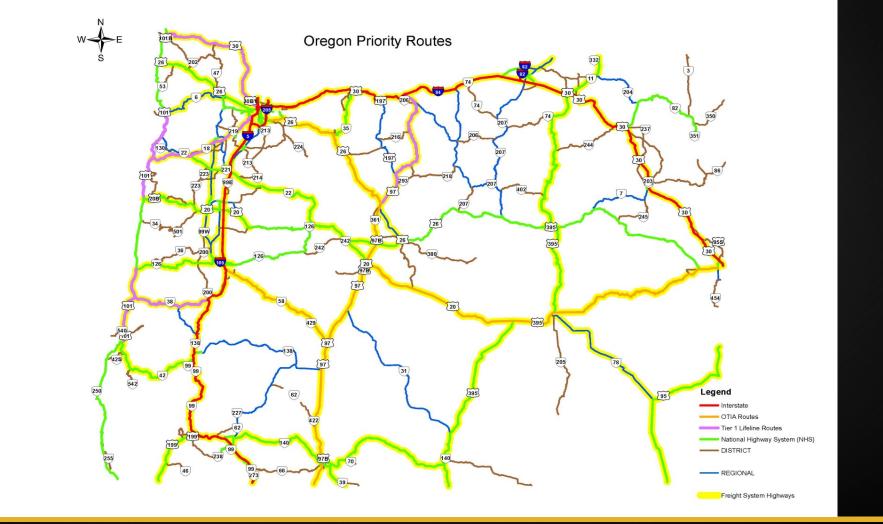

STRATEGIC LEVEL

- What is the condition of our roads?
- Are they getting better or worse?
- How much money should we allocate to our pavement programs?

Funding Impacts

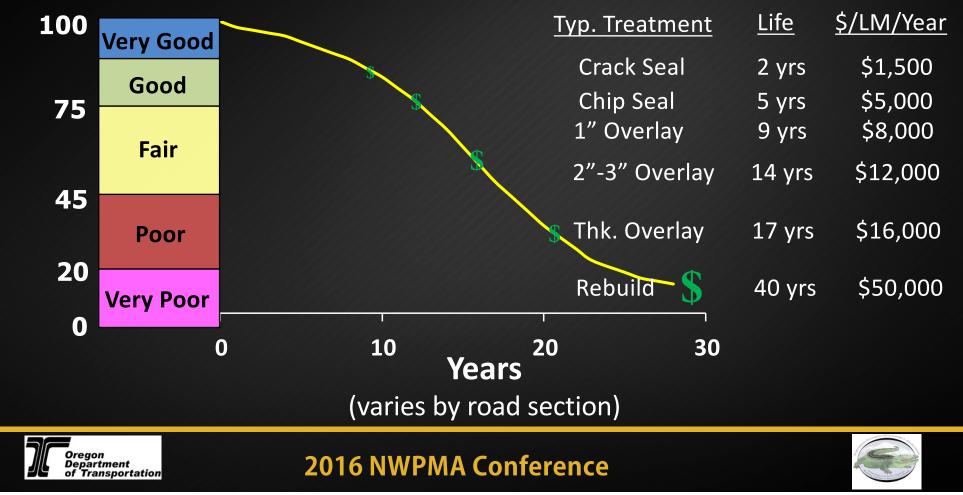
STRATEGIC LEVEL

- What is the condition of our roads?
- Are they getting better or worse?
- How much money should we allocate to our pavement programs?
- How should we prioritize our pavement investments?



Investment Priorities

Route Strategy	Treatment Priorities
Level of Importance	<u>Cost / Benefit</u>
1. Interstate	1. Chip Seals / 1" Lift
2. State Level (NHS) Routes	2. 2"-3" Paving
3. Region / District Level	3. Multi-lift 3R Paving
Routes	4. Reconstruction



Treatment Priorities

NETWORK LEVEL

How do we divide the money up?

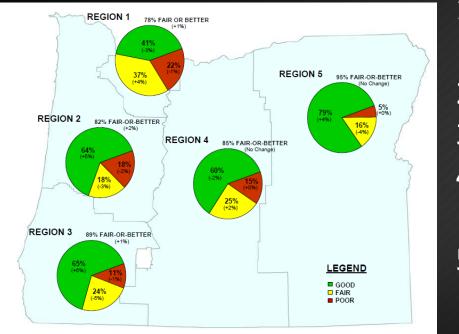
Money Allocations

- Fix-It STIP (Federal Funds)
 - Interstate Paving
 - Region Paving
 - Chip Seals
- Maintenance Program (State Funds)
 - MIM (Interstate quick hit)
 - Low Volume (Chip Seals and Thin Paving)
 - Patching

Oregon Department

Transportation

Interstate Allocation


- Target minimum 95% fair or better
- Revolving 8 Year Workplan Update every 2 yrs.
 - Current 4-Year STIP
 - Draft STIP (Years 5 and 6)
 - Future STIP (Years 7 and 8)
 - Shelf Projects

Region Paving – Initial Allocation

- 1. Forecast conditions one STIP cycle ahead (8 yrs. from data year)
- 2. Compute % fair or better by Region
- 3. Compare to target (by Hwy. class)
- 4. Determine \$ needs in each Region to reach target
- 5. Apply resulting percentages to funds available

Chip Seal Allocations

STIP – Primary Routes
 – Target Cycle Time – 6-10 years

- Maintenance Low Volume Secondary
 - District Discretion up to 80% of their budget
 - Target Cycle Time 8-14 years

NETWORK LEVEL

- How do we divide the money up?
- What projects should we do, and what year?

Fix-It STIP Paving Program

- Timeline Data to Construction 6 years!
- Use PMS to develop initial priority list
 - Project conditions 6 years ahead
 - Look to paving where chip seals, crack sealing, or patching is not viable option or will no longer work
 - Priority to higher classes / traffic highways
 - Priority to projects with higher cost effectiveness

Fix-It STIP Paving Program

- Regional preservation team (led by DM's)
 - Do road tour
 - Factor in regional and local issues, other work, etc.
 - Prioritize list for scoping

150% List

- 1. Start with Road Tour Priority List
- 2. Field Scope ≈200% of Initial Allocation
- 3. Refine Cost Estimates

Investigate differences - planning \$ vs. scope \$

4. Cut to 150% list

New Trial Process $150\% \rightarrow 100\%$

Applies to Pavement and Bridge Program

Score 1-5 for Each of these Factors	Weighting
Route Classification, ADT, Truck ADT	25%
Cost Effectiveness, Delay Risk	25%
Program Priority	25%
Region Priority	25%

Classification Points

<u>Classification</u>	<u>Score</u>
Interstate	5
OTIA or Seismic Lifeline	4
State Class Route or NHS	3
Regional Class Route	2
District Class or Other	1

ADT Points	
Traffic Level (ADT)	<u>Score</u>
> 10,000	5
>4,000 to <=10,000	4
>1,500 to <= 4,000	3
>500 to <=1,500	2
<=500	1

Truck ADT Points

<u>Truck ADT</u>	<u>Score</u>
> 1,200	5
>600 to <= 1,200	4
>300 to <= 600	3
>100 to <=300	2
<=100	1

Cost Effectiveness

<u>\$ / Lane Mile / Year</u>	<u>Score</u>
<= \$10,000	5
>\$10,000 to <=\$15,000	4
>\$15,000 to <=\$20,000	3
>\$20,000 to <= \$40,000	2
>\$40,000	1

Delay Risk

- Score 1 to 5
- Looks at Consequence of Delay beyond STIP
 - Maintenance Cost / Risk
 - Pavement Repair Cost Risk (missing the window)

Program Priority (1 to 5)

- Pavement Program Manager (yours truly) allotted 3 points per project
- Favor Projects which....

- Help performance measure achieve target
- Maximize benefit to the pavement and/or reduce maintenance requirements and costs
- Maximize long term pavement service life
- Provide safety benefits (i.e. rutting or pothole / failed pavement hazards / friction issues)
- Improve poor smoothness on routes with higher traffic speeds and freight movements

- Address severe raveling / degradation of driving surface too widespread for patching
- Minimize repetitive, reactive "throw away" maintenance costs
- Treat the disease rather than doing "short term fixes" that temporarily treat symptoms
- Have negative impacts if treatment is deferred beyond the STIP period

Region Priority (1 to 5)

- Regions Allotted 3 points per project
- Suggested criteria include, but not limited to:
 - Maintenance Impact
 - Community Impacts (economics, travel time, freight & modal impacts, etc.)
 - Safety Impact
 - Detour or alternative route availability
 - Project Delivery Staffing implications

100% List

- 1. Combine Bridge and Pavement project in one list
- 2. Rank by total weighted scores
- 3. Send to Highway Management Team
 - use results to set final Bridge/Pavement funding levels
 - use results for regional paving splits
 - use results for initial 100% project list

NETWORK LEVEL

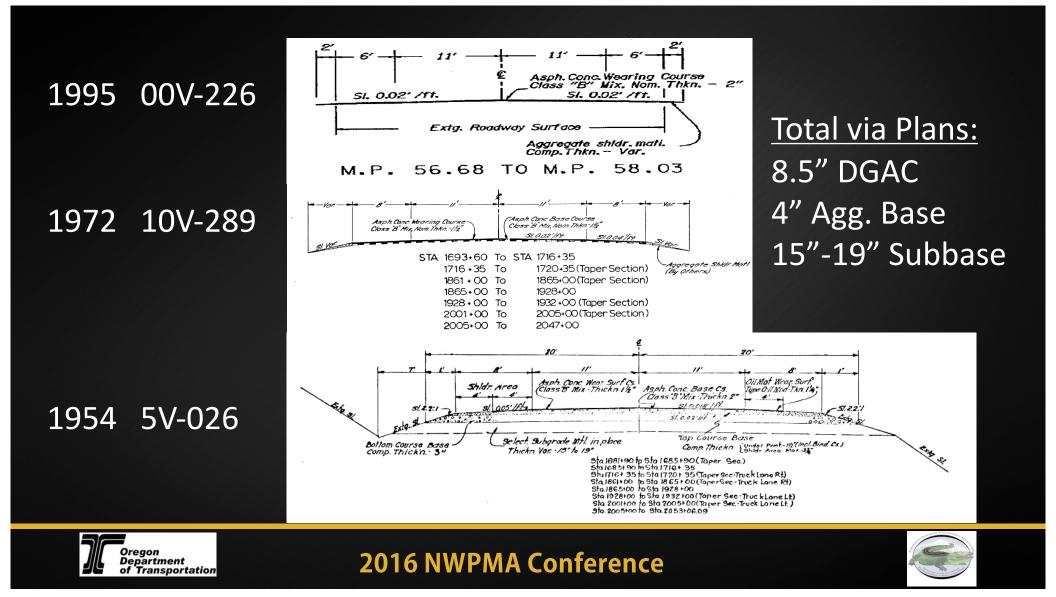
- How do we divide the money up?
- What projects should we do, and what year?
- Are there bundling opportunities?
- Are there leveraging opportunities?

100% List \rightarrow Final

- Start with 100% list
- Option to swap projects (leverage enhance)
 - Swap must be from the 150% list
 - Program Manager and District Manager must approve
- Shelf Program develop from unselected projects

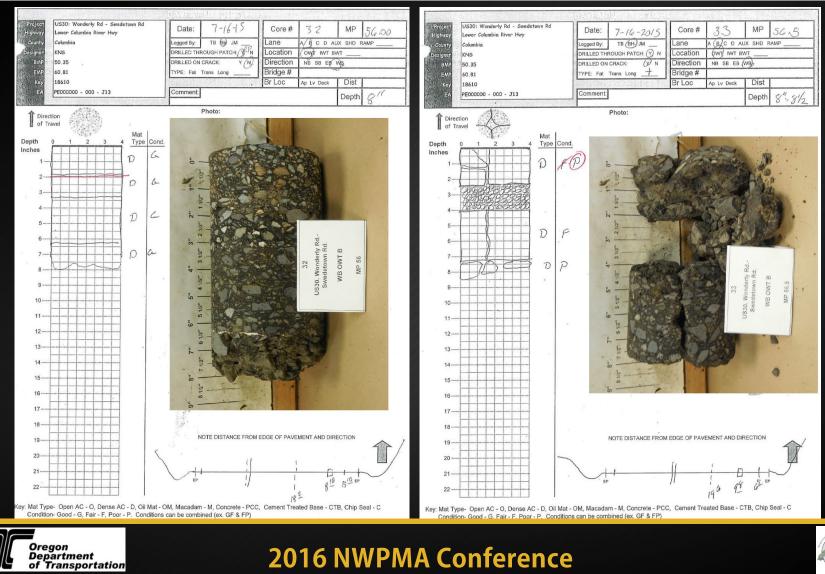
PROJECT LEVEL

What is this road section made of?


– Last resurfacing When? What? How thick?

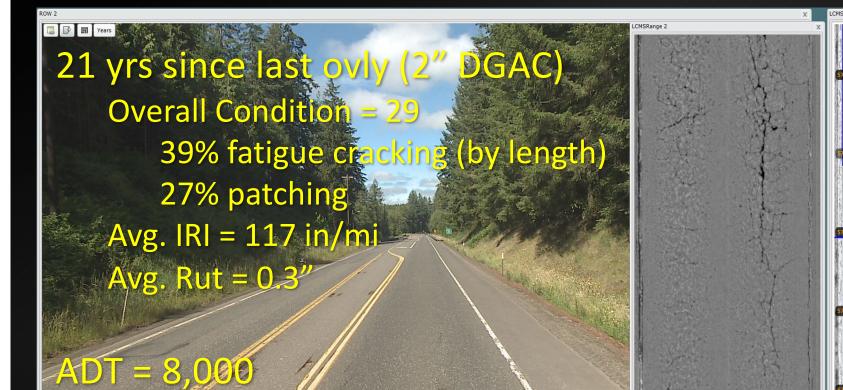
Pavement History

SECTION: US 30 : LEG TO BEAVER FALLS RD - SWEDETOWN RD							HWY NO: 092						
SEAL:				AGE:					BEGIN MP: 54.50				
PVMT TYPE: DGAC THIN OVLY A							ENDING MP: 60.94						
WC: B-MIX				AGE: 19				LENGTH: 6.44					
									REGION: 2				
					_ CON	STRUCT	ION HIS	STORY					
DATE	THKN	MTRL	THKN	MTRL	THKN	MTRL	<u>CPPR</u>	THKN	BASE	THKN	<u>SUB</u>	V-FILE	<u>CON #</u>
1995	2	в										00V-226	C11477
COMME	NTS: P	res list, 5	58.0-60.7	(1992) 2	2" inly in	climbing	lane					\smile	
1972	1.5	В	1.5	В								10V-289	C07716
COMME	NTS:												
1954	1.5	В	2	В				2	AG	16	AG	5V-026	C04172
COMME	NTS:												
<u> </u>													'
Coregon Department of Transportation 2016 NWPMA Conference													



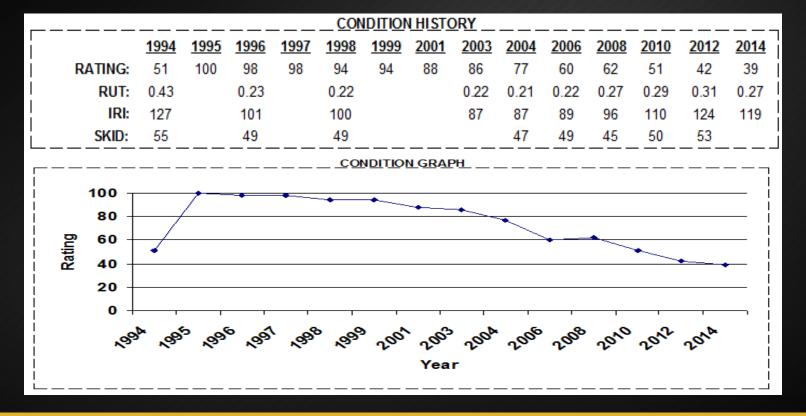
Mix Design Database

2007 US30: COLUMBIA COUNTY LINE	E-MP 61.70 (BOAT BMP 61.70 EMP 69.95	🖌 Wearing 🖌 Base	C13350
Asphalt Mix Properties:	Volum etric Properties as Built:	Asphalt Mix Gradation:	
Mix Type: 1/2" Dense Mix	E ffective binder content (%): 11.0013	% Retained 3/4": 0	
Mix Level: 3	Air voids (%): 7	% Retained 3/8": 20	
Number of Gyrations: 100	Total unit weight (pcf): 147.98	% Retained #4: 49	
Lime Added to Mix		% Passing #200: 7.2	
Asphalt Grade: PG 64-22			
%Rap: 30.00	i		
Tensile Strength Ratio: 93			



PROJECT LEVEL

- What is this road section made of?
 - Last resurfacing When? What? How thick?
- Performance?
 - How well has this section performed?



20 Yr ESAL's = 5 million

Performance Over Time

PROJECT LEVEL

- What is this road section made of?
 - Last resurfacing When? What? How thick?
- Performance?
 - How well has this section performed?

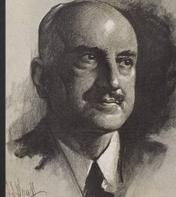
 How have other projects like the one we are planning to do been performing?

Nearby Project - Context

9 yrs since last ovly (3") Overall Condition = 96 0% cracking Avg. IRI = 58 in/mi Avg. Rut = 0.2"

Total via Plans: 8.5" DGAC 10" Agg. Base 18" Subbase

ADT = 6,000 / 20 Yr ESAL's = 5 million



PMS Data has Lessons

- PMS data is the <u>feedback tool</u> for evaluating previous decisions that have been made
- PMS data can be an important <u>knowledge transfer</u> tool for future road managers

"Those who fail to learn from history are doomed to repeat it"

John Coplantz Pavement Management Engineer

Oregon Dept. of Transportation Pavement Services Unit 800 Airport Road Salem, OR 97301 503-986-3119 john.s.coplantz@odot.state.or.us

