Concrete Overlays

Northwest Pavement Management Association 2016 Conference Jim Powell, P.E.

Concrete Pavement Overlays

- Use of PCC overlays has grown tremendously
- Significant research
 - FHWA (ISTEA Section 6005)
 - NCHRP and ACPA Studies
 - State studies
 - > LTPP
 - MN Roads

Why Concrete Overlays?

- Do not require extensive repairs of existing pavement
- Long performance life
- Low maintenance requirements
- High load-carrying capacity
- Withstands heavy truck traffic
- Effective life-cycle costs

National Concrete Overlay Database

- Consult the National Overlay Explorer App on the ACPA website.
- Data on many projects.

National Concrete Overlay Explorer

National Concrete Overlay Explorer

Family of Concrete Overlays

Bonded Resurfacing Family

- Thin Overlays (2″ − 6″)
- Over concrete, asphalt, and composites
- Bond is critical

Whitetopping - History

- First Whitetopping
 - South 7th street in Terre Haute, Indiana 1918
 - Existing flexible pavement was overlaid with 3 -4 in. of reinforced concrete
- During 40's and 50's Used to upgrade military & civil airports
- Highway use
 - Started approx. 1960
 - Types have included JPCP, JRCP, CRCP, FRC

Whitetopping History

- Began in Iowa in 1960's as overlay on farm to market asphalt roads
- Thickness greater than 4"
- Performance was excellent
- Bonding to asphalt layer was noticed

Short joint spacing allows the slabs to deflect instead of bend. This creates the need to balance thickness and joint spacing.

Influence of Slab Geometry on Stresses

Slabs Sizes and Thickness For Same Top Stress (363 psi)

Concrete Thickness: 10 in. Slabs: 15 ft x 12 ft

Concrete Thickness: 6.3 in. Slabs 6 ft x 6 ft

Uses and Advantages- Bonded Resurfacing of Asphalt or Composite Pavements

2"-6" thickness

- Use to eliminate any surface defects, increase structural capacity, and improve surface friction and ride.
- Use to avoid reconstruction and make use of existing materials.

Resurfacing of Asphalt or Composite Pavements

2"-5" thickness

- Typically used directly over asphalt without additional repairs except for milling.
- Working cracks in existing pavement will not reflect through.
- Can used in conjunction with widening.

- Spots of distress that aren't visible can be determined through evaluation such as the stiffness of the asphalt pavement and subgrade support conditions.
- Localized areas of weakness can be strengthen through patching. Milling can remove a number of asphalt surface distresses.

Bonded Concrete Resurfacing of Composite Pavements

- Asphalt is a good reflector of underlining concrete pavement condition.
- A review of the existing profile grade line should be conducted and areas of significant deviation investigated through analysis of core samples in the laboratory.

Repairs-Bonded Resurfacing of Asphalt or Composite Pavement

Milling: Bonded Resurtacing of Asphalt or Composite Pavements The three main objectives of milling:

- 1. to remove significant surface distortions that contain soft asphalt material, resulting in an inadequate bonding surface
- 2. to reduce high spots to help ensure minimum resurfacing depth and reduce the quantity of concrete needed to fill low spots; and
- 3. to roughen a portion of the surface to enhance bond development between the new concrete overlay and the existing asphalt. (don't leave a thin lift)

of Asphalt or Composite Pavements

- Complete removal of ruts is not needed when rutting in the existing asphalt pavement does not exceed 2".
- Any ruts in the existing pavement are filled with concrete, resulting in a thicker concrete overlay above the ruts.

• A minimum of 3"-4" of asphalt should be left after milling because of the reliance on the asphalt pavement to carry a portion of the load.

mportant Elements-Bonded Resurfacing of Asphalt/Composite Pavement

- Clean Surface/Bond is important for good performance
- Thin milling may be required to eliminate significant surface distortions of 2" or more and provide good bond.
- Leave at least 3" remaining asphalt after milling.

- •Control surface temperature of existing asphalt to below 120°F.
- •Try to keep joints out of wheel paths.
- Curing should be timely and adequate.
- •Small joint spacing to minimize bonding shear stress

BCOA Thickness Designer

ACPATApplication Library

← → C f thtp://apps.acpa.org/apps/bcoa.aspx

Background

This bonded concrete overlay on asphalt (BCOA) thickness design web application is based primarily on the results of FHWA-ICT-08-016, "Design and Concrete Material Requirements for Ultra-Thin Whitetopping", a research project conducted in cooperation with the Illinois Center for Transportation at the University of Illinois (ICT), the Illinois Department of Transportation (IDOT), and the Federal Highway Administration (FHWA). The web application reflects the views of the ACPA, who is responsible for the facts and accuracy of the data presented within it. The contents do not necessarily reflect the official views or policies of ICT, IDOT, or FHWA, and this application does not constitute a standard, specification, or regulation. Designers should understand the assumptions/imitations of the research on which this tool is based and also be knowledgeable about the various types of concrete overlay offerings and design/construction details of each type.

Bonded Concrete Overlay on Asphalt (BCOA) Thickness Designer

General Design Details

Design Lane ESALs: Estimate ESALs	0	Help
Slabs Cracked at End of Design Life (%):	20 %	Help
Reliability (%):	85 %	Help
Effective Temperature Gradient (°F/in.):	-1.4	Help
Time at Effective Temperature Gradient (%):	58 %	Help

Existing Pavement Structure Details

Remaining Asphalt Thickness (in.):	4	Help
Asphalt Modulus of Elasticity (psi):	700,000	Help
Modulus of Subgrade Reaction (pci):	150	Help
	Calculate k-Value	

▶ B- ₽-

BCOA Thickness Designer

Acknowledgements	Concrete Material Details				
National Concrete Pavement Technology Center	28-Day Flexural Strength (psi):	750	Help		
	Fibers Used In Concrete:	No Fibers			
	Concrete Modulus of Elasticity (psi):	3,600,000	Help		
ILLINOIS CENTER FOR	Coefficient of Thermal Expansion (10 ^{-6/o} F):	5.5	Help		
Rederal Highway Administration	Concrete Overlay Details				
	Joint Spacing (in.):	72	Help		
Status of This Design Method	Preoverlay Surface Preparation	d Asphalt, Milled & Cler	aned - Help		
While this thickness designer is based on the latest in bonded concrete overtay on asphalt (BCOA) design methodologies, research into this topic is still	Calculate Design				
ongoing. For example, research into typical effective temperature gradients and time at the effective temperature gradient for different	Calculate Reset Fields				
locations in the United States is currently being	Calculated Concrete Thickness:	4 inches	Help		
webplication app upon its release. Research to	Bonding Limit:	120 %	Help		
📷 Microsoft PowerPoi 🚺 🧐 Banded Concrete O				< 1	🚯 🕪 10:26 PM

View @ http://apps.acpa.org/apps/bcoa.aspx

BCOA Thickness Designer

- Available 24-7 from web
- Calibrated with available overlay performance data (Illinois, Iowa)
- Research underway to improve some criteria (by CP Tech Center)
 - Temperature modeling
 - Calibration
- Will incorporate technology into ACPA's StreetPave along with other design models

COURSES RESEARCH LAB TOUR BCOA-ME

BCOA - ME

SPONSORING AGENCIES

NORTHWEST

BCOA ME Sponsors

BCOA ME Main Screen

GENERAL INFORMATION		
.atitude (degree):	45.35	Geographic Information
Longitude (degree):	-122.36	
levation (ft):	223	
Stimated Design Lane ESALs:	12787000	ESALs Calculator
Maximum Allowable Percent Slabs Cracked (%):	15	
Desired Reliability against Slab Cracking (%):	90	
CLIMATE		
AMDAT Region ID	3 🔻	
Map of Sunshine Zone	6 •	
EXISTING STRUCTURE		
Post-milling HMA Thickness (in):	4	
HMA Fatigue	Adequate *	Fatigue Cracking Example
Composite Modulus of Subgrade Reaction, k-value (psi/in):	150	k-Value Calculator
Dens the suisting little assessed have been seen	0.4	

BCOA ME Traffic

ESALS ESTIMATION:	
Is One-Way ADT Available?	es O N
ESTIMATE ESALS:	
Design Life (yrs):	30
Terminal Serviceability:	2.5 *
Number of Lanes in Each Direction:	2 •
Percent Trucks(%):	8
ADTT Growth Rate (%):	2
Traffic Growth Rate Type:	Non linear 🔻
Road Category:	Major arterial 🔻
One-Way Average Daily Traffic (ADT):	15000
CANCEL	SUBMIT

BCOA ME Environment

GEOGRAPHIC INFORMATION

Option 1

Open webpage to estimate climate information.

or

Option 2

Choose closest city with a similar climate:

CANCEL

Open Webpage

OR V PORTLAND V

SUBMIT

BCOA ME Main Screen

Average 28-day Flexural Strength (three-point bendi V	850	
Estimated PCC Elastic Modulus (psi):	3930000	Epcc Calculator
Coefficient of Thermal Expansion (10-6 in/*F/in)	6	CTE Calculator
Fiber Type:	No Fibers	¥
JOINT DESIGN		
JOINT DESIGN Joint Spacing (ft):	6 x 6 ¥	
JOINT DESIGN Joint Spacing (ft):	6 x 6 ¥ Calculate design	
JOINT DESIGN Joint Spacing (ft): PERF	© × 6 ¥ Calculate design	
JOINT DESIGN Joint Spacing (ft): (PERF Calculated PCC Overlay Thickness (in)	© × 6 V Calculate design	5.13
JOINT DESIGN Joint Spacing (ft):	© × © ¥ Calculate design	5.13 5

Macro Fibers

Table	1.	Concrete	Mix	Proportions	and	Fresh	and	Mechanical	Concrete	Properties
-------	----	----------	-----	-------------	-----	-------	-----	------------	----------	------------

Materials (kg/m ³)	Plain concrete	0.32% synthetic macrofibers	0.48% synthetic macrofibers	0.35% hooked-end steel fibers	0.50% crimped-steel fibers
Coarse aggregate	995	975	976	965	983
Fine aggregate	823	806	807	796	813
Cement	363	360	360	347	363
Water	178	182	183	163	172
Daracem (mL/100 kg)	925	1,116	1,117	868	1,328
Water-to-cement ratio	0.49	0.51	0.51	0.49	0.47
Air content (%)	1.8	2.9	2.8	6	3.2
Slump (mm)	200	150	115	110	190
Compressive (MPa)	41.1	36.1	31.8	34	37.2
Flexural strength (MPa)	4.73	4.69	4.82	4.68	5.28
${}^{a}R_{e,3}$ = values (%)	2	24	39	43	35
Slab thickness (mm)	139.7	131.8	131.8	131.8	131.8

 ${}^{a}R_{e,3}$ = equivalent flexural strength ratio at 3-mm deformation.

BCOA ME Design w/ Fibers

PCC OVERLAY PROPERTIES

Average 28-day Flexural Strength (three-point bendi V	650	
Estimated PCC Elastic Modulus (psi):	3930000	Epcc Calculator
Coefficient of Thermal Expansion (10-6 in/°F/in)	6	CTE Calculator
Fiber Type:	Synthetic Structural Fibers V	
Fiber Content (lb/yd3):	3	
JOINT DESIGN Joint Spacing (ft):	6 x 6 •	
JOINT DESIGN Joint Spacing (ft):	6 x 6 V CALCULATE DESIGN	
JOINT DESIGN Joint Spacing (ft): 	6 x 6 T CALCULATE DESIGN PERFORMANCE ANALYSIS	
JOINT DESIGN Joint Spacing (ft): —— Calculated PCC Overlay Thickness (in)	6 x 6 V CALCULATE DESIGN	4.16
JOINT DESIGN Joint Spacing (ft): Calculated PCC Overlay Thickness (in) Design PCC Overlay Thickness (in)	6 x 6 V CALCULATE DESIGN	4.16 4.5

- Spokane, WA
 - 3 sections on I-90, 3", 4", 5"
 - Constructed in 2004
 - Eastbound AADT 40,000
 - Excellent performance in 4" and 5" sections
 - Reconstructed in 2011

- Kalispell
 - 5" on ?"-5" of HMA
 - 6' joint spacing
 - 18,000 ADT in 2000
 - 30% Trucks
 - Built in 2000
 - Performing very well

- Bellevue
 - 3" PCC on 3" AC
 - Built 1998
 - Still in service
 - Cracking in edge panels due to lack of support. Edge panels have been replaced.

- US 20/26 & Middleton Road
- Built in 2005
- 4" on 4"
- Still in service
- Excellent performance

Other NW Projects

- Portland
 - NE Columbia Blvd.
 - 4" 6" PCC on 0" 4" Asphalt
 - N. Denver Avenue
 - 2.5" PCC on Variable Sections
- Eugene
 - Coburg Rd.
 - 6" PCC on 4" Asphalt
- Yakima
 - 40th and Knob Hill
 - 6" PCC on 2" 4" Asphalt

Portland

QUESTIONS?

