### Treatment Strategies and Performance Models

#### Section 4

## **Criteria for Treatment Strategies**

- Pavement condition
- Surface type/pavement materials
- Functional classification
- Level of condition that will "trigger" or initiate a treatment





### **Example of Trigger Values**







### **Preventive Maintenance**

- Treatments that extend the life of the pavement by preserving the existing structure.
  - Fog seal
  - Chip seal
  - Slurry seal
  - Micro surface
  - High-density mineral bond



# Light Rehabilitation

- Treatments that typically replace the wearing surface of the existing pavement but may not provide any structural capacity increase
  - Thin bonded overlays
  - Open-graded friction course
  - Cape seals

### Heavy Rehab and Reconstruction

- Treatments that partially or fully restore and/or increase the structural and functional capacity of pavements
  - Thick overlays
  - White-toppings
  - In-place recycling
  - Full-depth reclamation
  - Complete reconstruction



### Example-Minnesota Decision Tree – Part 1





### Example-Minnesota Decision Tree – Part 2



Further branches consider curb thickness, traffic, and severity of transverse cracks



# Example-Excerpts From CDOT's Treatment Rules

- Micro Surface
  - Pavement Type <= "2", IRI >=65, RSL equal to or between 11 and 20, Rut, Block and Fatigue between 50 and 85
- Thin Overlay (2 in)
  - Pavement Type <= "2", SHLDRT "C", RSL equal to or between 3 and 15, IRI <=65 or Rut <=75, Block and Fatigue >=65



### Impact Rules

- Impact on condition indexes (or distress) immediately after treatment
- Change in surface type
- Future rate of deterioration



### Impact Rules

Condition Index



### Pavement Performance Models

# Why Use Performance Models?





# *Reliable* Model **Requirements**



- Need an <u>adequate</u> database
- Must include <u>all</u> factors that affect performance
- Need to select appropriate functional form
- Include a method to assess precision & accuracy of model

# Most Common Performance Models

- Deterministic (empirical) the most common
- Easy to develop & understand, but limited to same pavement sections that it was based on
- Probabilistic
- More representative of performance, but difficult to develop



# Family Models

- Group pavement sections by characteristics
- Reduces number of variables and models
- Assume similar deterioration
- Reflects average deterioration for family
- Allows ranges of values to be used for developing families

### Example - WsDOT SR2



### Pros & Cons of Family Models



| PROS                           | CONS                                                           |
|--------------------------------|----------------------------------------------------------------|
| Easy to develop<br>& interpret | Does not explicitly deal<br>w/ errors in data or model<br>form |
| Less variables                 | Difficult to measure effect<br>on independent variables        |
| Allows ranges of variables     |                                                                |



# **Typical Challenges**

- Lack of historical construction data
- Lack of data in useable format
- Lack of accurate & reliable data
- Lack of representative data
- Data variability

### Example - IDOT





# Condition

### **Example of Data Variability**





### Why Do We Need Good Data?





## Model Improvements

- Must be updated regularly
- Feedback loops to link models with engineering practices



