Managing Risks on Your Pavement Preservation Project

Discussion Outline

City of Tigard PMP Overview

Pavement Construction Cost Risks

Project-Level Investigation Tools

Tigard Case Study

Tigard Basic Facts

- Population 50,444
- Incorporated 1961
- 152 centerline miles
- Many streets built in 60s, 70, and 90s
- PCI 70
- 22 mile backlog

Funding & Expense

- Budget: \$1.6M
- Source: Street Maintenance Fee

Rating/Inventory

Overlay Candidates

 Triggered by network-level analysis (Traffic Volume, PCI, StreetSaver)

• List modified by project-level considerations

60

Project-Level Considerations

- Factors not considered at network level:
 - Other planned activities in ROW (Pipes, etc.)
 - Commercial/residential developments
 - Potential discrepancy in traffic conditions
 - Findings from a project-level evaluation
 - Combination with other paving streets
 - Others
- Considering these requires human intervention

What we want to know:

- Does the street really need paving?
- Will an overlay do? Or does it need more?
- What's under the pavement?
 - Pavement thickness
 - Pavement integrity
 - Top-down vs. bottom-up cracking
 - Base thickness and integrity
 - Subgrade support
 - Others
- Goal: build the right project on the right street at the right time

Potential Cost-Increase Risks

 Agencies incur greater risk without conducting project-level evaluations

Common cost overrun situations:
– Moisture Damage
– Delamination

- Variable Pavement Conditions
- Inadequate Pavement Capacity

Moisture Damage

Not readily visible from surface

- Milling into or above moisture-damaged pavement causes a gravelly mess
- Detection
 - -Core
 - -Ground penetrating radar
- Risks:
 - Deeper grind
 - -More AC

Delamination

- Commonly not visible from surface
- Detection and repair same as for moisture damage
- Risks:

GEODESIGN[¥]

- Deeper grind
- Increased AC

Variable Pavement Conditions

- Widened roads
- Overlain trench patches
- Thickness variation
- Composite pavement
- Detection:
 - As-built drawings
 - Cores
 - Ground penetrating radar
- Risks:

GEODESIGN

- Accelerated distresses
- Extra work at time of construction
- Reflective cracking
- Variable life of treatment

Inadequate Pavement Capacity

- Pavement has experienced more/higher loads than originally anticipated
- Common causes:
 - New developments
 - New bus line
 - Rapid growth
 - Redirected traffic
 - Risks:

GEODESIGN

- PM software typically does not take into account pavement capacity
- Rehabilitation not always the best strategy
- Limited funds may not be wisely spent

Project-Level Evaluation Tools

Distress Survey/Mapping

- Agency benefits:
 - Cracking patterns
 - Identify subgrade problems
 - Suggestions as to depth of distress
 - Total amount of distress
 - Rehabilitation options, localized repair

• Drawbacks:

EODESIGN

- Depth of distress unknown
- Misses subsurface conditions (e.g., moisture damage)

Rehabilitation through grinding can be risky

Cores

• Agency benefit:

- Pavement thickness data
- Cracking depth
- Moisture damage measurement
- Aggregate base condition

• Drawbacks:

GEODESIGN[¥]

- Destructive test
- Point data
- Requires traffic control

Ground Penetrating Radar (GPR)

- Agency benefits:
 - Layer thickness data
 - Some distress information
 - Data at highway speeds
 - Quick and efficient
 - Traffic control normally not required
- Drawbacks:
 - Data in a straight line
 - Need multiple runs to get cross section data

Understanding GPR

C:\Dropbox\FLDOT\SR20 West #4.07T: WIGGLE

C:\Dropbox\FLDOT\SR20 West #4.DZT: LINESCAN

 Reflections are produced when the pulse encounters a material with different dielectric constant

 Dielectric Constant: Air = 1

 Asphalt = 3-5
 Concrete = 6-8

GPR Raw Data

GEODESIGNE

TIGARD

Dynamic Cone Penetrometer (DCP)

- Agency benefits:
 - Inexpensive
 - Assessment of layer properties beneath surface layer
 - Accurate rehabilitation design
- Drawbacks:
 - Requires access to base layer
 - Limited evaluation locations

GEODESIGN[¥]

DCP Results

Table 4. Base Thickness, Base Modulus, and Subgrade Modulus Estimated from DCP Testing

Core Number	Street	Direction	Estimated Base Thickness ¹ (inches)	Estimated Resilient Modulus (psi)		
				Base	Subgrade	
C-1	North Dakota	Westbound	19.7	19,300	6,000	
C-2	North Dakota	Eastbound	13.0	18,900	6,700	
C-3	North Dakota	Westbound	14.6	19,500	8,100	
C-4	North Dakota	Eastbound	16.1	20,700	6,300	
C-5	North Dakota	Eastbound	9.1	36,100	5,200	
C-6	North Dakota	Eastbound	6.3	21,000	6,200	
C-7	North Dakota	Westbound	11.8	18,400	4,800	
C-1	115 th	Northbound	12.2	11,900	3,600	
C-2	115	Southbound	6.3	21,900	4,700	
C-1	92 nd	Northbound	5.5	17,200	4,700	
C-2	92 nd	Northbound	6.7	18,800	4,500	
C-3	92 nd	Southbound	5.9	19,100	5,100	
C-4	92 nd	Northbound	9.4	19,600	3,900	
C-1	Nimbus	Southbound	11.4	25 300	6 100	

Falling Weight Deflectometer (FWD)

- Agency benefits:
 - Non-destructive
 - Direct pavement
 capacity assessment
 - Accurate rehabilitation design
- Drawbacks

GEODESIGN

- More expensive
- Calculation intensive

Load Plate

Deflection Sensors

Understanding FWD

Understanding FWD

Understanding FWD

 E_p = effective pavement modulus • $\delta_0 = f(P, E_p, M_R, D, a)$ δ_0

D

FWD Results

TABLE B-1 FWD Results Fairfield Avenue from Highway 99 to Royal Avenue Eugene, Oregon

Approximate Station	Direction	Back- Calculated Resilient Modulus (psi)	Back- Calculated Effective Pavement Modulus (psi)	Back- Calculated Structural Number
26+20	Southbound	2,636	42,503	3.00
25+18	Southbound	2,903	70,645	3.55
24+21	Southbound	2,841	80,316	3. 🔪 🥫
23+47	Southbound	2 403	64 660	3.
GeoDesign ¥				

Rehabilitation Design

Project-Level Investigation Tools

Case Study: City of Tigard

- Local to arterial streets
- 2014 and 2015 paving seasons
- Project-level investigations
- ADA requirements

2014 Overlay Program

- 12 initial candidates
- Project-level investigations:
 - Cores
 - GPR
 - Walk-throughs:
 - Digouts
 - Deeper grinds
 - ADA

Final Project List:
✓ Locust Street
✓ Spruce Street
✓ 71st Avenue
✓ 78th Avenue
✓ Tigard Street
✓ 121st Street

2015 Overlay Program

- 16 initial candidates
 Project-level investigations:
 - Cores
 - DCP
 - GPR
 - Pavement designs
 - Walk-throughs

Final Project List:
✓ Walnut Street
✓ Grant Street
✓ North Dakota Street
✓ Springwood Drive
✓ Nimbus Avenue
✓ 92nd Street

Results

Summary and Conclusion

- Limited budgets and resources
- PM software → initial list of rehab candidates
- Project-level investigations \rightarrow final list
- Reduce construction cost overruns
- Responsible public stewards
- Thank you!

GEODESIGN

