Off the Beaten Path-Porous Pavements for Recreation

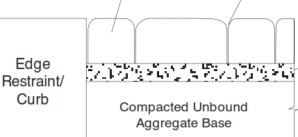
Northwest Pavement Management Association Fall 2013 Meeting October 18, 2013

> John Duval, P.E. Principal Engineer PAVEMENT SERVICES, IN

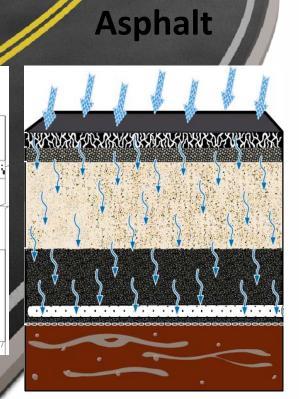
Porous Pavements in Recreation

Overview

- 1. Introduction
- 2. Design
- 3. Materials
- 4.Construction Guidelines

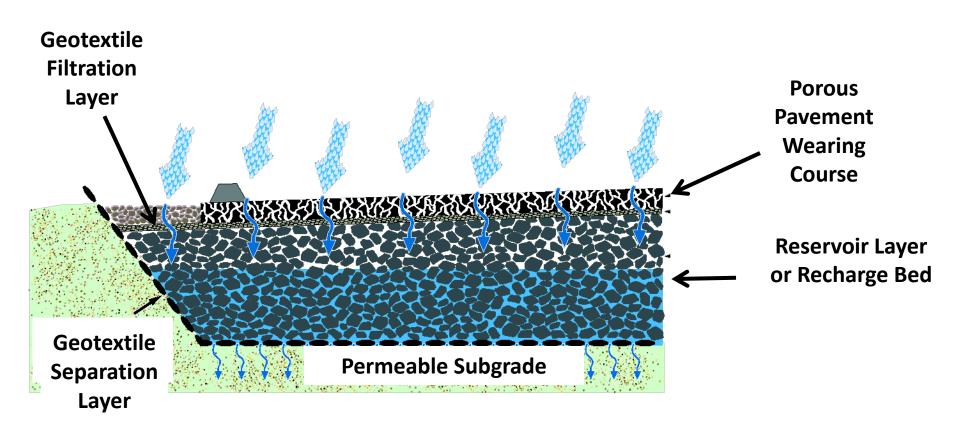

Introduction

What's in a Name

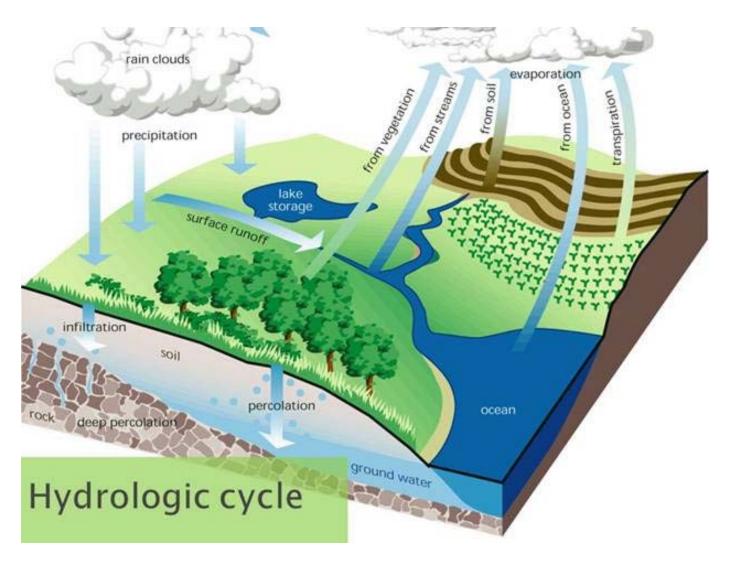

Pervious Concrete

Permeable Pavers Concrete Pavers Joint Sand

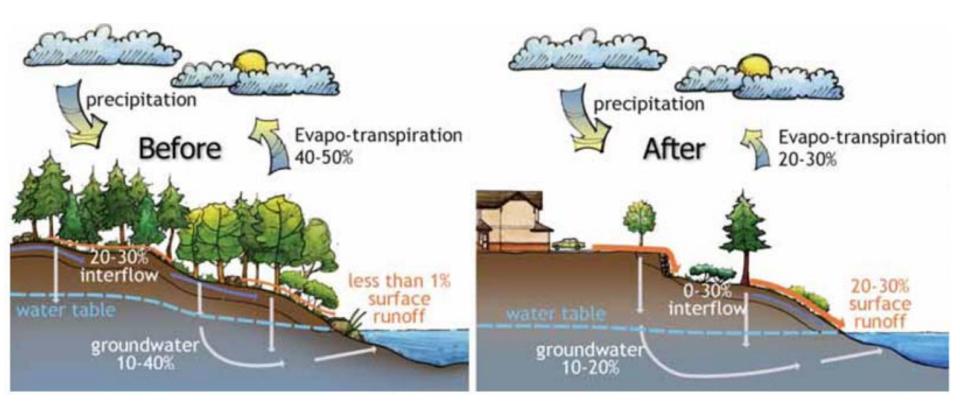
Compacted Unbound Aggregate Sub-Base



Porous


Porous Pavement System

1


Hydrologic Cycle

Source: North Carolina State University

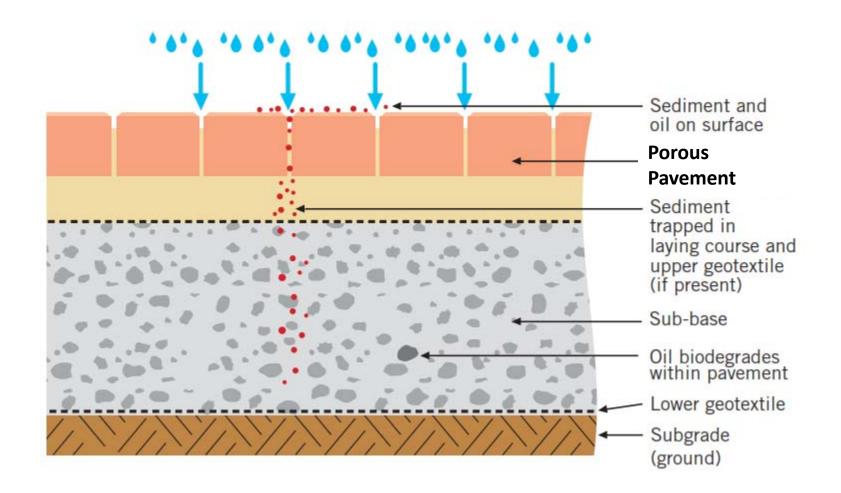
"Hardscape" Effects Hydrologic Cycle

Impact to Quantity of Runoff Impact to Water Quality

Source: Puget Sound Partnership

Impact to Water Quality

- Human Health
 Pollutants
- Drinking Water
 Aquifer Recharge
- Habitat
 - Scour
 - Sedimentation



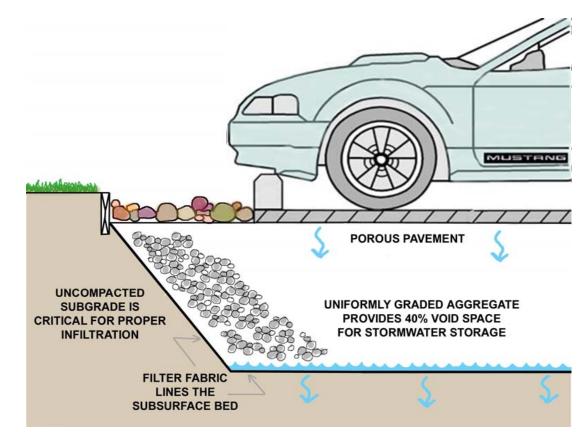
Why Porous Pavements?

- Reduce Quantity of Runoff
- Improve Quality of Runoff

Water Quality Treatment Potential

Water Quality Treatment Potential

Percentage Removal of Pollutants


Total suspended solids Hydrocarbons Total phosphorus Total nitrogen Heavy metals (source: CIRIA C609, 2004)	60-95% 70-90% 50-80% 65-80% 60-95%
Water Quality Treatment Potential	
Removal of total suspended solids Removal of heavy metals Removal of nutrients (phosphorus, nitrogen) Removal of bacteria Treatment of suspended sediments & dissolved pollutants	High High High High
(source: CIRIA C697, 2007)	

Source: Interpave "Understanding Permeable Pavements"

Why Porous Pavements?

- Reduce impervious surface
- Recharge ground water
- Improve water quality
- Eliminate need for detention basins
- Provide useful purpose in addition to storm water management (parking lot, trail, street)

Design Considerations

- Structural Design
 - Traffic
 - Subgrade
- Hydrologic Design
 Percolation Rate
 - Recharge Bed

Traffic

- Porous Pavements are Suitable for
 - Automobiles/Light Trucks
 - Recreational Facilities
 Bike Paths
 - Trails
 - Parking Lots
 - Driveways

 Not Recommended for Fleavy Trucks

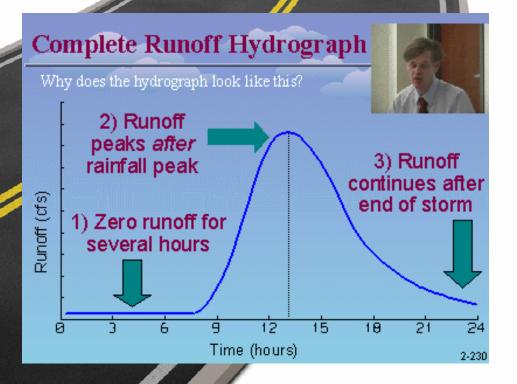
Subgrade

Pervious Concrete

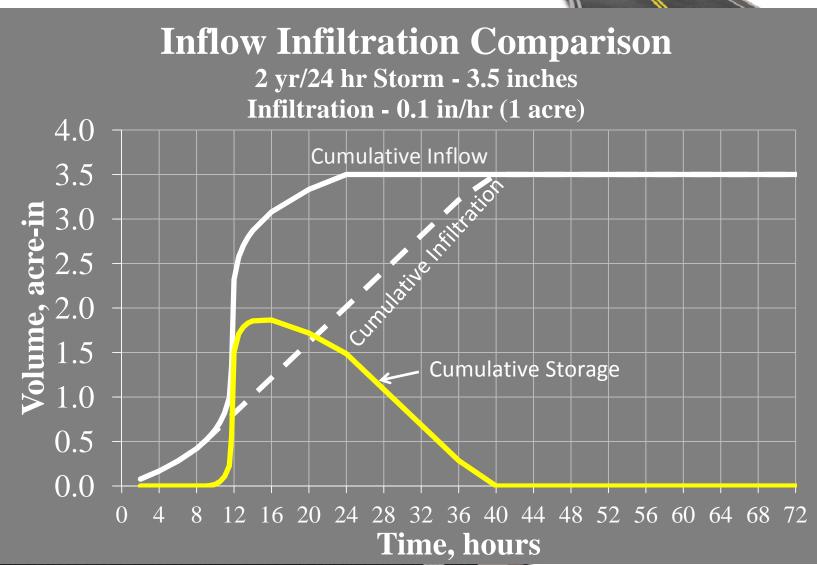
– Resilient Modulus, M_F

• Permeable Pavers

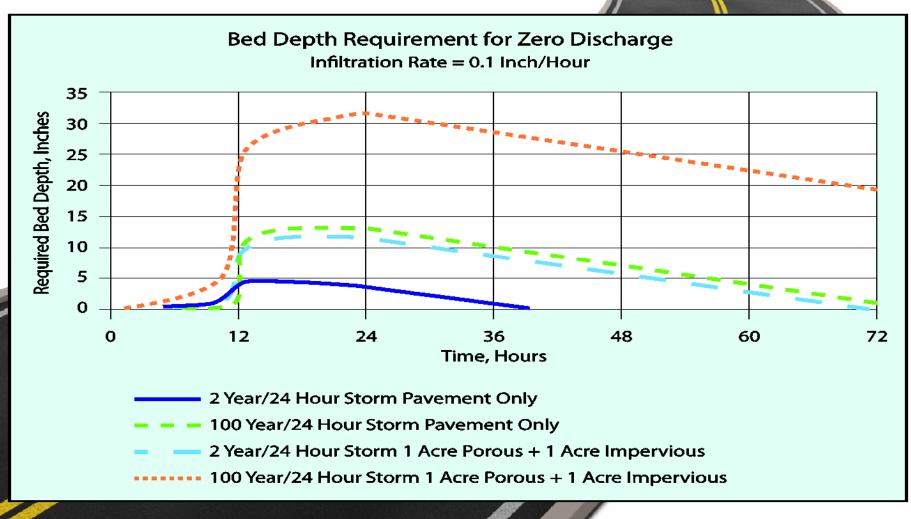
Porous Asphalt – CBR


Hydraulic Design—Subgrade

- Soil percolation rate
- EPA → 0.5"/hr !!
- Local \rightarrow 0.1"/hr okay
- Depth to bedrock > 2'
 Depth to high water > 3'
- Fill not recommended


Hydraulic Design

- Storm Intensity
 - Typical designs for 2 year/24 hr storm
 - Conservatively design for 10 year/24 hr storm
 Meet Local & State wastewater
 - mitigation requirements.

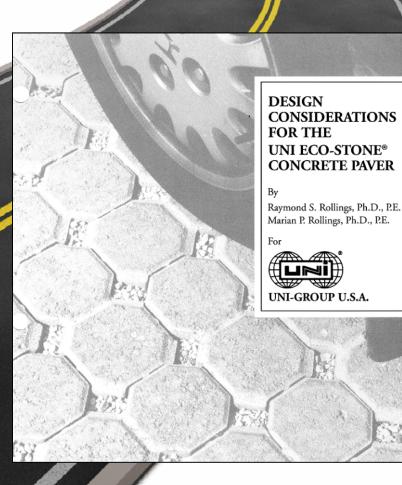


Hydraulic Design

Source: http://www.wsi.nrcs.usda.gov/products/W2Q/H&H/docs/TRs_TPs/TP_149.pdf`

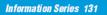
Hydraulic Design

Structural Design Pervious Concrete


- ACPA PerviousPave Software
 - Design based on Fatigue Damage
- TrafficSubgrade
- Hydraulic Inputs
- Design PCC Thickness and Recharge Bed Requirements

ousPav	/e						
Jnits	About	Check for Updates					
oject	Traffic	Structural Properties	Hydrological Properties	Design			
	1					Traffic Category:	Residential/Parking Lot
						Axle load, kips	Axles / 1000 trucks
Applie	ation (L	oad Spectra)				Single Axles	
			Help			22	0.96
() R	esidentia	/Parking Lot				20	4.23
						18	15.81
00	ollector					16	38.02
0.0		or Minor Arterial				14	56.11
05	nouider f	or Minor Arterial				12	124
05	houlder fi	or Major Arterial				10	204.96
00						8	483.1
	User D	efined				6	732.28
						4	1693.31
						Tandem Axles	
						36	4.19
Avera	ge Daily	Truck Traffic			Help	32	69.59
	T (averag	e daily truck traffic, one-	wav)	2	(incip	28	68.48
01101	(averag	e daily track traine, one		-		24	39.18
ADT	(average	daily traffic, one-way)		100		20	57.1
						16	75.02
% T	rucks			1		12	139.3
						8	85.59
						4	31.9
Dee		affic on Design Section		100 %	Help	0	0
rei	cent of fi	and on Design Section		100 %		Tridem Axles (Us	
Ann	nual Truck	Traffic Growth		2 %	Help	52	0
				2	Theip	46	0
						40	0
						34	0
						28	0
						22	0
						16	0
						10	0
						4	0
						0	0

Structural Design Permeable Pavers


- Flexible Pavement
 Design
- CBR
- Traffic
- Use any method including AASHTO 93, AI SW-1, or PCASE
- Replace AC Layer with Paver Blocks Using Equivalency Factors

Structural Design Porous Asphalt

- Follow AASHTO Design Procedures
 - Layer coefficients
 - Open-Graded 0.40-0.42
 - Asphalt Treated Permeable Base 0.30-0.35
 Stone bed 0.10-0.14
- Minimum Asphalt thickness
 - 2.5" Parking areas (little or no trucks)
 4.0" Residential type streets

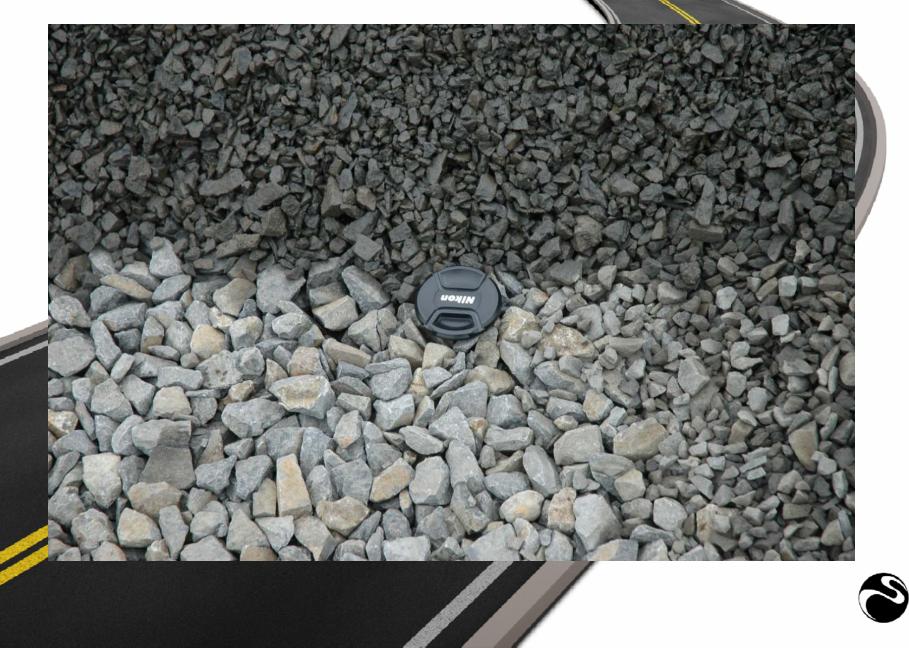
Porous Asphalt Pavements for Stormwater Management

Design, Construction and Maintenance Guide

Geotextile

Separation Layer

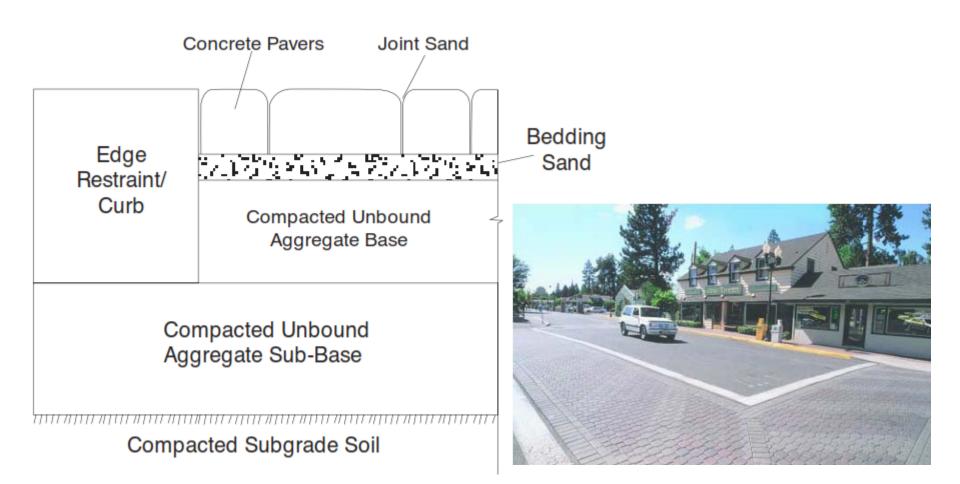
Place on uncompacted subgrade



Recharge Bed Materials

	%Passing			
Sieve	Reservoir AASHTO No. 2	Choker AASHTO No. 57		
3"	100			
2 ¹ / ₂ "	90 - 100			
2"	35 - 70			
1 1⁄2"	0 - 15	100		
1"	-	95 – 100		
3/4"	0 - 5	-		
1/2"		25 – 60		
No. 4		0 - 10		
No. 8		0 - 5		

Choker/Reservoir Aggregates



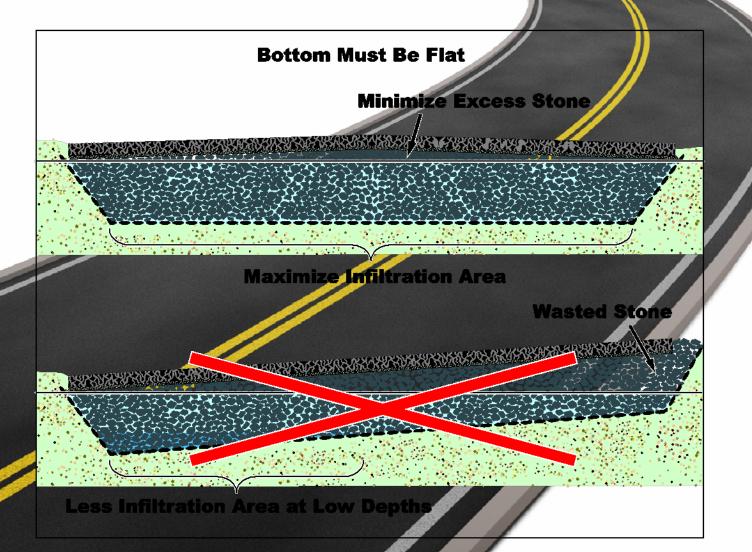
Pervious Concrete

- Zero Slump mix
- Low w/c ratio (0.28 0.35)
- Open graded
- Standard Portland Cement
 - No Reinforcing Steel
- Fibers okay

Permeable Pavers

Porous Asphalt

- Open Graded Mix
- Polymer Modified Binder
 - PG 70-22 ER – PG 70-28 ER
- Fibers to control draindown
 Va > 16%


Pringle Creek

1 Mar. 1

Flat Bottom



Slopes

• Slope – limit surface slope to 5%

– Terrace when necessary

Ref: Pennsylvania Stormwater Best Management Practices Manual

Pervious Concrete Construction

Porous Asphalt Construction

Maintenance/Snow Removal

- Inspect several times first few months during storm events.
- Inspect annually thereafter.
- Pavement surface should be vacuumed and may be flushed or jet washed annually.
 - Use liquid de-icing compounds as needed
- Do not use sand, ash, or salt for snow or ice

Resources

Porous Asphalt Pavements for Stormwater Management

> Design, Construction and Maintenance Guide

DESIGN CONSIDERATIONS FOR THE UNI ECO-STONE® CONCRETE PAVER

By Raymond S. Rollings, Ph.D., P.E. Marian P. Rollings, Ph.D., P.E.

John Duval, P.E.

john@psipdx.com

ERVICES, INC.