PAVEMENT SPECIALISTS

Gary Houston
Director of Sales Marketing & Technology
International Surfacing/VSS Emultech/Valley Slurry
Seal

What is a Road?

A road is a load bearing structure for the purpose of allowing the conveyance of people, animals and vehicles

Once it is built it starts to deteriorate and needs to be maintained.

The overall structure of the road is very slow to deteriorate

Why Asphalt?

Heavy Loadings

Materials for Road Construction

Aggregates Brick

Asphalt Cement Wood

Air Glass

Water Plastic

Clay Fibers

Portland Concrete Used Carpets

Cement Tennis Balls

Lime Oils

Polymers Lignonsulphonates

Tires Magnesium chloride

Steel Calcium chloride

Comprehensive Commence of the Commence of the

Three Forms of Energy

Mechanical
Thermal
Chemical

Why Asphalt?

Why Asphalt?

What is its purpose?

Waterproofing

Dust Abatement

Aggregate Durability

Widely available

Non-hazardous, benign

Strength – it is part of a structural system

Asphalt Composition

A semi-solid, refined material

Mostly carbon and hydrogen (hydrocarbons), minor amounts of O, N & S and metals.

Minor constituents \rightarrow heteroatoms.

Heteroatoms → 'functional groups.'

Asphalt is a mixture of complex molecules.

Oils → Resins → Asphaltenes

Asphaltene Structure

Asphalt Manufacture

Asphalt manufactured (refined) via thermal separation process.

Crude Oil distilled at atmospheric pressure & ~ 600C.

Bottoms of the distillation (residuum) distilled at reduced pressure (under vacuum).

Vacuum residuum is asphalt, or asphalt cement.

Asphalt Manufacture

Refining Schematic

Factors Affecting New Asphalt Properties

Crude Oil
Light, medium, or heavy
Sweet or Sour
Heteratoms

How it is refined
Temperature
Pressure
Time

Why Asphalt Will Never be Cheap Again...

GASES←

COKER

Refinery Yield (% of Crude Intake)

Asphalt Refining Capacity & Demand 2010

U.S. Total

535,000 B/D 34.3 million tons

Does not include Canadian asphalt capacity

U.S. Demand 25.3 million tons

Source: Oil and Gas Journal US Refining Report

Asphalt Institute Annual Usage Survey

Asphalt Economics

Barrel of Oil/Asphalt => 160 Liters

\$ 90 per bbl	\$ 515 per T
\$ 100 per bbl	\$ 570 per T
\$ 120 per bbl	\$ 685 per T

- This reflects only raw material costs for the refiner.
- It does not consider refining costs, transportation, or profit
- Does not consider market forces

Diesel Economics

Barrel of Oil/Diesel => 160 Liters

\$ 2.50 per gallon	\$ 0.66 per L	\$ 105 per barrel
\$ 3.00 per gallon	\$ 0.79 per L	\$ 126 per barrel
\$ 4.00 per gallon	\$ 1.05 per L	\$ 168 per barrel

- This reflects only raw material costs for the refiner.
- If \$ 100 crude, and \$ 4 diesel, would you make diesel or asphalt?

Aspalt Pricing – Going Forward in 2012

According to Poten & Partners (1/6/12)

Rocky Mountain							
WY/MT				49	00 —	555	
CO/NM	+525	_	550	+50	00 —	550+	
AZ/UT	525		600	52	20 —	575	
Wholesale - Rail FOB				+45	50 —	460+	
West Coast/Northwest					·	·	
WA/OR	+550		575	+54	I5 —	565+	
N. CA	+585	_	620-	+58	35 —	595+	
S. CA	+580	_	640-	+55	50 —	590+	

Asphalt

Three ways to move (pump) asphalt cement

- 1. Heat (standard asphalt from refinery).
- 2. Thin with diluent. (cutbacks)
- 3. Emulsify (disperse AC in water).

Each method has different costs and environmental effects associated with it.

Asphalt Cement - Grading

Based on performance parameters at high and low service temperatures

PG 64-22

"64" refers to 64 C (147F)
viscosity at mixing/laying temperatures
rutting potential

"-22" refers to -22 C cold weather performance

Cutback Asphalt Cement

```
Types of cutback asphalt cement:
   RC: Rapid Cure (gasoline, naphtha):
      High volatility of solvent
      Tack coats, surface treatments
   MC: Medium Cure (kerosene):
      Moderate volatility
      Stockpile patching mix
   SC: Slow Cure (heavy oils, diesel):
      Low volatility
      Prime coat, dust control, cold mix
```

Asphalt Rubber

Thermal energy and mechanical energy used to combine:

asphalt cement, crumb rubber tires, and other additives

Enhanced engineering properties of the asphaltrubber composite.

Asphalt Emulsion or Emulsified Asphalt

Combine two liquids that don't mix Homogeneous

Droplets within a continuous phase

Two Immiscible Liquids

Unstable Emulsion

Separation begins

Stabilized with an emulsifier

Surface Treatments Moving Along the Curve

Pavement Age

Thank you

Gary Houston

Gary.houston@slurry.com

(916) 373 1500