

USE OF GEOSYNTHETICS IN FLEXIBLE PAVEMENT

Sachin Mandavkar, M. Tech. Civil - Geotechnical . Maccaferri Inc.

sachin@maccaferri-usa.com

www.maccaferri-usa.com

Engineering a better solution

FLEXIBLE AND RIGID PAVEMENT

TYPICAL FLEXIBLE PAVEMENT SECTION AND TERMINOLOGY

GEOSYNTHETICS

- Geosynthetics is "a planar product manufactured from polymeric material used with soils and aggregate in variety of geotechnical engineering applications".
- Geosynthetic usage has steadily increased in both public and private construction projects in last three decades.
- Geosynthetics is likely to increase in the future with stricter environmental regulations enforcement.

MAJOR GEOSYNTHETIC PRODUCTS

- ➤ Geotextiles
- Geogrids
- > Geonets
- Geomembranes
- > Geocomposites

GEOSYNTHETICS IN PAVEMENT

- The primary purpose of incorporating the use of Geosynthetics in the pavement design process is to reduce reflective cracking
- Geosynthetics resist moisture intrusion into the underlying pavement structure, stabilize roadways and their edges.
- It improve road quality, particularly when roads were built on unstable soil.

FUNCTIONS OF GEOSYNTHETICS

Geotoxtila	Separation	Reinforcement	Filtration	Drainage	Moisture
geolexille	N	\checkmark	V	1	- united
geogrid	N	V			
geocomposite	V	V	V	٨	V
geonet				٨	
geomembrane					V
					1
geomembrane					

SEPARATION

- Geosynthetics is sandwiched between aggregate base course and subgrade material.
- It prevents mixing of the two layers, aggregate loss and pumping.

FILTRATION

- Geosynthetic acts as a filter by preventing material from washing out while allowing the water to flow through.
- Allowing an increase in subgrade strength.

DRAINAGE

- Drainage applications refer to situations where the water flows within the plane of the geosynthetic product .
- Prevents water logging in the pavement structure.

REINFORCEMENT

- Lateral Confinement
- Load Distribution

- It helps in maintaining the pavement integrity and uniformity.
- It reduces the differential settlement in roadways.

Layer	Benefit
Subgrade	Reduce rutting due to construction traffic Provide working platform Improve subgrade bearing capacity Reduce differential settlement when spanning soft zones Reduce need for chemical stabilization

TYPICAL FLEXIBLE PAVEMENT SECTION AND POTENTIAL REINFORCEMENT LOCATION Overlav Asphalt Concrete Layers Potential Reinforcement Unbound Base Aggregate Locations Unbound Subbase Aggregate Subgrade **Design Approach 1: ALLOWS FOR REDUCTION IN** AGGREGATE BASE FOR SAME **SREVICE LIFE Design Approach 2: INCREASE THE PAVEMENT SERVICE** LIFE

AND POTENTIAL REINFORCEMENT LOCATION

AND POTENTIAL REINFORCEMENT LOCATION

AND POTENTIAL REINFORCEMENT LOCATION

Layer	Benefit
Base and Subbase Aggregate	Reduce surface deformation by reducing permanent deformation in unbound aggregate and subgrade layers
	Reduce fatigue cracking in asphalt concrete layers by reducing dynamic deformation

Layer	Benefit
Asphalt Concrete	Reduce fatigue cracking
Reinforcement	Reduce frost heaving and cracking due to heaving

TYPICAL FLEXIBLE PAVEMENT SECTION AND POTENTIAL REINFORCEMENT LOCATION Overlay Asphalt Concrete Layers Potential Reinforcement Unbound Base Aggregate Locations Unbound Subbase Aggregate Subgrade Road Mesh[™] after fixing to levelling course

TYPICAL FLEXIBLE PAVEMENT SECTION AND POTENTIAL REINFORCEMENT LOCATION Overlay Asphalt Concrete Layers Potential Reinforcement Unbound Base Aggregate Locations Unbound Subbase Aggregate Subgrade

TYPICAL FLEXIBLE PAVEMENT SECTION AND POTENTIAL REINFORCEMENT LOCATION Overlay Asphalt Concrete Layers Potential Reinforcement Unbound Base Aggregate Locations Unbound Subbase Aggregate Subgrade Road Mesh[™] overlap to reduce construction joint cracking

Layer	Benefit
Overlay	Reduce reflective cracking, Reduce water infiltration

SUMMARY OF APPLICATION AREAS AND BENEFITS OF GEOSYNTHETICS IN FLEXIBLE PAVEMENT

SUMMARY OF APPLICATION AREAS AND BENEFITS OF GEOSYNTHETICS IN FLEXIBLE PAVEMENT

WHAT ABOUT THE WATER INFILTRATED IN THE PAVEMENT SECTION? WHERE DOES IT GO?

BENEFITS OF GEOSYNTHETICS IN FLEXIBLE PAVEMENT

BENEFITS OF GEOSYNTHETICS IN FLEXIBLE PAVEMENT

Maccaferri products

MACCAFERRI

à

MACCAFERRI SOLUTIONS FOR FLEXIBLE PAVEMENT

	Product	Feature / Benefit		
iyers	Road Mesh™	Steel wire hexagonal mesh with transverse steel bars. Road Mesh™ provides the highest level of protection against rutting, shoving, fatigue, thermal, reflection and settlement cracking.	XXX	Grid Size: 80x100mm Strength: 40 - 60kN/m
pnait la	MacGrid [®] AR	Glass fibre or polyester woven geogrid with coating. With high tensile strength and high modulus of elasticity at low elongation, MacGrid® AR is a cost effective solution for preventing cracks in the upper pavement layers.		Grid Size: 12.5mm or 40mm Strength: 50 - 200kN/m
AS	MacGrid [®] AR G	Glass fibre or polyester woven geogrid with coating and geotextile backing. MacGrid [®] ARG is impregnated with bitumen to provide crack prevention with a waterproof membrane and improved bond between the asphalt layers.		Grid Size: 12.5 or 40mm Strength: 50 - 200kN/m
S	MacGrid [®] EG	Extruded polypropylene biaxial geogrids. MacGrid® EG controls deformation and rutting, enabling the thickness of granular layers to be reduced.	HH	Grid Size: 38mm Strength: 15 - 40kN/m
nd layer	MacGrid® WG S	Woven polyester geogrids with polymer coating. MacGrid [®] WG provides cost effective, long term control of deformation and rutting with soft subgrades or high axle loads.	17	Grid Size: 20 - 35mm Strength: 20 - 300kN/m
Unbour	MacTex® W1/W2	Woven polypropylene (W1) and polyester geotextiles (W2) provide separation and reinforcement for construction on soft ground.		Strength: (W1): 20 - 110kN/m Strength: (W2): 40 - 880kN/m
	MacTex® N / H	Non-woven needle-punched polyester geotextiles. MacTex® N/H are used to separate granular materials preventing interlayer contamination.		Strength: 6 - 35kN/m
ainage	MacDrain®	Drainage geocomposites with a polymeric drainage core and a non-woven geotextile filter on one or both sides to stop the core clogging with soils.		Drain core and textile performance selected to suit application

Maccaferri products

MACCAFERRI

MACTEX W1 & W2

Geotextile woven in monofilament of polypropylene (W1) or polyester (W2)

High tensile strength (up to 800 KN/m) for short and long term application

High resistance against damaging and environment.

MACCAFERRI SOLUTIONS FOR THE FOUNDATION LAYERS Officine Maccaferri s.p.a.

MACTEX™ W1

POLYPROP YLENE WOVEN FABRICS

MACTEX** W1 geotextiles are planar woven structures manufactured by weaving in the warp and welt directions polypropylene tapes and/or polypropylene monofilaments.

MACTEXTM W1	28	35	45	55	65	85	105		
Mechanical and Hydrautic properties		16	TAONE	There	1	1	í	manoist	
Tensile strength (MD)	EN 18O 10319	khi/m.	27	51	41	45	63	85	100
Tolerance			-3	-3	-3	-3/	-3	-3	.3
Extension at max load (MD)	EN 150 10919	16	15	10	17	18	17	19	20
Tolevence			23	23	23	23	23	2.3	23
Tensile sherth (CD)	EN (90 10010	khim	20	33	42	50	01	01	104
Tolerance			-5	-6	5	-5	-5	-5	- 6
Extension at max toad (CO)	EN ISO 10310	36	12	17	12	13	15	15	16
Tolenance			±0	±5	20	10	23	2.5	±3-
CBR (Static Puncture Resistance)	EN 190 12236	kNI .	3,0	3,5	5	5	8	10	10.5
Tolerance	di dana seria da la		-0.5	-0.5	-0.5	0.9	0.5	-0,5	-0.5
Cone Drop Test (Dynamic Puncture	EN ISO 13435	(7975	14	11	. 12	10	10	7.5	1.5
Tolerance			+9.	+3	+3	+2	+2	+2	+0 3
Permeability (Normal to plane)	EN ISO 11056	m/sec	0.015	0.018	0.021	0.018	0.014	0.025	-0.033
Tolerance			-0.005	-0.005	-0.005	-0.006	-0.006	-8.806	-0.006
Opening Pare sale O ₂₀	EN ISO 12956	µm.	200	230	250	100	160	120	470
Tolerance		11.	± 60	± 60.	± 00	± 36	± 50	± 50	± \$6
Physical properties - typical	- A								
Polymer-warp and weft					Pe	lypropyle	1.10		
Roll width		Ranging from 4 to 5.3							
Roll length			200	200	200	200	200	200	200

MACTEX W2					78		11.05	108	128	18.85	-	20.06	218	**	38,10		83.86	8	00.05	**
Nechanikad and Hydrodic proper																				
Twide dauge (ND)	0100100	-	40	=	80	ю	110	118	138	100	100	236	220	28	36	**	500	500	680	=
Tolerace			-8	.4	+10	-16	-10	-11	-10	-41	-10	-30	+30	-30	-30	-41	-8	40	-40	-8
State sime (ad (40)	24 80 1638				5		10	ю	8		10	10	10		13	12		15		н
Tolerance			15	ø	\$	10	12	10	15	ø	15	425	10	425	10	40	£	12	м	12
Texal e-dentili (CD)	68 EO 1658	-	41		80	90	56	***	130		100		220	85	10	58		110	15	18
Tolerance			-8	-8	-10	-10	-\$	-11	-10	-85	-10	-5	-30	-6	-10	٠	-8	-40	٥	-8
Stak at nex ket (32)	66.501036	×		٠		٠	10		10		11	10	90	11	11	===	11	11	90	н
Triemue			لغ	(ی	42	40	42	4	si)	a)	ند	405	43	428	43.5	43		42	42.6	=2
OBR (Balls Purchase Residence)	66 00 12220	-	3		•	7		٠		7		11	π	н£	118	н	-14		13	
Triemue			-1	-2	-2	-2	-2	-0	-4	4	-8	-0	-6	-6	a	4	-4	-4	-a	-4
Own Dep (Dynamic Purchase)	DEBOSIE	1	29	м	90	括	30	30		2	42	43	90	括	15	5	3	Я	5	
Toleiace			-18	+6	45	-4	16	**	18	47	15	47	45	-4	-14	47	+5	*	+3	-
Permetality (Nom & K. pikm)	68/001208	nte s	0.67	687	008	608	6.08	0.64	0.05	0.64	0.62	0.94	002	0115	608	608	6.015	0.835	0102	66
Tolesmon			-013	-605	-603	-001	-6.05	40	4.62	4.0	-011	-682	-601	-661	4.05	4.60	4.005	-008	0.00	41
Opening Ports Base Ope	68.001108	1m	610	1306	50	366	650	****	600	960	400	400	480	18	90	86	200	296	ю	10
Triesaue			<u>1</u> 250	200	1000	2100	1200	210	400	180	4210	£ 70	#110	480	40	4200	±00	#10	40	-
Physical properties - typical																				
Polynemia operation 1											() I was		**							_
Relie		•									Ref	widt:								
Rdlauge		•	100	10	80	100	100	100	108	140	100	100	100	10	100	10		50	50	. 94
Anticidentian of the product whereas any average that a comparison and an equipart and the second and an equipar- tic transmission and an equipartic transmission and an equipartic transmission and transmission and an equipartic transmission and an equipartic transmission and an equipartic transmission and an equipartic transmission and an equipartic transmission and an equipartic transmission and an equipartic transmission and an equipartic transmission and an equipartic transmission and an equipartic transmission and an equipartic transmission and an equipartic transmission and an equipartic transmission and and an equipartic transmission and an equipartic transmission and an equipartic transmission and an equipartic transmission and an equipartic transmission and an equipar	for the optimization and represent of the advant dependence of the product dependence of the			1 de	med af Shinn.	 The Constant Hand Fa- mittedy Test was partici- 	for fully interested us	Other strengths top to	 The shows products Ru- strate automatic products. 	factured to proof are reconstruction and definely latest are to be	with rule for within or of the second for a final second for a second se	definitioners	 The material can be pro- duced also in 35 - 522m 	NOTE				ster years.	the walp and weft diver- tions high teracity poly-	are planar woven shutto

MACCAFERRI

MACGRID EG S

High modulus high density PP grids

Simmetric tensile strength up to 40 KN/m

High Elastic modulus 30% UTS at 3% and 70% UTS at 5%

MACCAFERRI SOLUTIONS FOR THE FOUNDATION LAYERS Officine Maccaferri s.p.a.

MACGRID[®] EG POLYPROPYLENE BI-AXIAL GEOGRIDS

MACGRID[®] EG are high modulus polypropylene geogrids, produced by an extrusion process characterized by a tensile resistance both in the longitudinal and in the transverse direction.

They are inert to all chemical existing in natural soils 4<ph<9. MACGRID* EG are mainly used for "soil stabilization" and for some kinds of soil reinforcements applications.

MACGRID EG	15S	20S	30S	40S		
Mechanical Properties						
Minimum Average Tensile Strength Longitudinal direction		kN/m	15.0	20.0	30.0	40.0
Tensile strength at 2% strain Longitudinal		kN/m	5.0	7.0	10.5	14.0
Tensile strength at 5% strain Longitudinal		kN/m	7.0	14.0	21.0	28.0
Typical strain at M.A.T.S Longitudinal	EN ISO 10319	%	13	13	13	13
Minimum Average Tensile Strength Transverse direction	ASTM D 6637 kN/n kN/n	kN/m	15.0	20.0	30.0	40.0
Tensile strength at 2% strain - Transverse		kN/m	5.0	7.0	10.5	14.0
Tensile strength at 5% strain - Transverse		kN/m	7.0	14.0	21.0	28.0
Typical strain at M.A.T.S Transverse		%	10	10	10	10
Typical junction strength efficiency Typical value	GRI GG2/GG1	%	95	95	95	95
Physical - Chemical Properties						
Grid Structure				Extrudeo	d bi-axial	
Polymer			100%	stabilized (UV polyprop	oylene
Carbon Black content		%		2	2	
Color				Bla	ack	
Mesh Opening size nominal value (1)		mm	38x38	38x38	38x38	38x38
Roll Length		m		5	0	
Roll Width		m		3.	95	

The mesh size refers to length x transverse directions. Aperture tolerance ± 3mm. Larger openings as 65x65 are available on request.

For the optimization and improvement process of the technical characteristics of the products, the producer reserves the right to modify standard and characteristics of the product without any warning. The information contained herein is to the best of our knowledge accurate, but since the circumstances and conditions in which it may be used are beyond our control, we do not accept any liability for any loss or

Maccaferri products

MACCAFERRI

MACGRID WG S

-High tensile strength (220 KN/m) for short and long term applications with a cross tensile strength of 20 KN/m or symmetric up to 130 KN/m

-Woven geogrid made of high tenacity polyester multifilament yarns

- PVC or PE coating

							1		r		ø	ų,		2		1	
MACGRID WG		2	3	38	4	4S								P	6	A	
Mechanical properties (typical	values)											1				10	
Tensile strength - MD (EN ISO 10319)	kN/m	25	40	40	45	45			N		1	9					
Tolerance		-5	-5	-5	-5	-5								10	1		
Strain at max strength - MD (E ISO 10319)	N %	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12
Tolerance		±2.5	±2.5	±2.5	± 2.5	±2.5	± 2.5	± 2.5	±2.5	±2.5	±2.5	± 2.5	±2.5	±2.5	±2.5	± 2.5	± 2
Tensile strength - CMD (E ISO 10319)	N kN/m	25	25	40	25	45	35	60	35	75	35	90	35	35	130	35	2
Tolerance		-5	-5	-5	-5	-5	-15	-5	-15	-10	-15	-10	-15	-15	-20	-15	-1
Strain at max strength - CMD (EN ISO 10319)	%	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12
Tolerance		±2.5	±2.5	±2.5	± 2.5	±2.5	± 2.5	± 2.5	± 2.5	±2.5	±2.5	±2.5	± 2.5	±2.5	±2.5	± 2.5	± 2
Physical properties																	
Mesh size (nominal)								20 x 2	20 - 25 :	x 25 - 3	5 x 35						
Geogrid core								high	n tenaci	ty polye	ster						
Polimeric coating (standard)						EVA o	r PVC										
Roll width (standard)	m	from 3.6 to 5.3 accordino to stock and production availability															
Roll length (standard)	m								1	00							

MACCAFERRI SOLUTIONS FOR THE FOUNDATION LAYERS Officine Maccaferri s.p.a.

Maccaferri products

MACCAFERRI

PARAGRID & PARALINK

Information in this Certificate may assist the client, planning supervisor, designer and contractors to address their adligations under these Regulations become 6 Debey to atte, handling and alrage (5.1 and 5.2)

Readies are advected sheak the radiaty of the Centilizate by either relieving to the EBP's website levies Advants, at will an contenting the ORA shear (Response Horize 07923 doll-2003)

idustria

High tensile strength (up to 1350KN/m) for short and long term applications with a cross tensile strength from 5 to 15KN/m

Strip bonded geogrids with high tenacity polyester core and polyethylene coating

Certified BBA, NTPEP

MACCAFERRI

MACDRAIN W

Manufactured by thermobonding a draining core in extruded monofilaments (GMA) with one filtering nonwoven geotextile that may also be working as separation or protecting layer.

The draining three dimensional core will have a "W" configuration as longitudinal parallel channels.

MACCAFERRI SOLUTIONS FOR THE FOUNDATION LAYERS Officine Maccaferri s.p.a.

Maccaferri products

MACCAFERRI

TECHNICAL DATA SHEET

Rev. 03, Date 10.12.2010

MACDRAIN[™] W 1061 DRAINAGE COMPOSITE

Geocomposite for planar drainage (GCD), realized by thermobonding a draining core in extruded monofilaments (GMA) with two filtering nonwoven geotextiles that may also be working as separation or protecting layers. The draining three dimensional core will have a "Wr configuration as longitudinal parallel channels.

		Standard	Unit	Value	Tolerance
EXTERNAL FILTERS (GTX)					
Structure: needlepunched and thermotreated nonwoven geotex	tiles				
Raw Material: UV stabilized polypropylene					
Mass per unit area		EN ISO 9864	g/m²	130	average value
Thikness at 2 kPa		EN 9863-1	mm	0.80	+/-15%
Tensile strength MD & CMD		EN ISO 10319	kN/m	10.0	-1.3
Static puncture resistance		EN ISO 12236	N	1600	-20%
Dynamic puncture resistance		EN ISO 13433	mm	26	+20%
Flux perpendicular to the plane		EN ISO 11058	I/(m².s)	100	-30%
Characteristic opening size O ₉₀		EN ISO 12956	micron	90	+/-30%
DRAINAGE CORE (GMA)					,
Structure: three dimensional geomat made by extruded monofi	laments se	et in longitudinal p	arallel cha	nnel config	juration
Raw Material: polypropylene UV stabilized by carbon black					
Mass per unit area		EN ISO 9864	g/m²	400	+/-10%
Width			cm	415	+/-2%
GEOCOMPOSITE (GCO)					
Thickness at 2 kPa		EN 9863-1	mm	7.0	-10%
Thickness at 20 kPa		EN 9863-1	mm	6.2	-10%
Mass per unit area		EN ISO 9864	g/m²	660	+/-10%
Tensile strength MD		EN ISO 10319	kN/m	19	-2
Strain at max load MD		EN ISO 10319	%	50	+/-20%
In plane flow capacity MD		EN ISO 12958	l/(m.s)		-30%
		gradient i =	0.03	1.0	
soft/so	ft contact	20 kPa	-	1.80	
rigid/so	ft contact	20 kPa	0.32	2.10	
		50 kPa	0.14	1.00	
		100 kPa	0.07	0.70	
STANDARD DIMENSIONS OF GEOCOMPOSITE					
Width (1)			cm	420	average value
Length			m	75	average value
Roll area			m²	315	+/-4%
Roll diameter			cm	80	average value

(1) Material is available in submultiple of standard width; check feasibility with our commercial dpt.

MD : longitudinal direction CMD : transversal direction

The producer, for his optimization and improving process of the products technical charaderistics, has the faculty to modify the standards and the charaderistics of the product whout any pre-advice. All the information are given in base to our experience, in any case no responsibility for an incorrect use could be referred to the producer or one of his distributors.

THANK YOU...

Sachin Mandavkar, M. Tech. Civil - Geotechnical . Maccaferri Inc. <u>sachin@maccaferri-usa.com</u> www.maccaferri-usa.com

MACCAFERRI Engineering a better solution