Implementing Pavement Management Systems, Do's and Don'ts at the Local Agency Level

Roger E. Smith, P.E., Ph.D. Zachry Department of Civil Engineering Texas A&M University

Do

Understand Basic Pavement Management Concepts

Pavement Management Is A Decision Making Process

Effective Pavement Management

- □ Based on finding cost-effective treatments
- □ At given time
- □ To provide desired level of service

Pay me Now

or

Pay me Later

Pay Me Now

- □ 3 Seal Coats at \$ 0.70 /sy 24 yrs
- □ 1 Overlay at \$ 3.50 /sy 8 yrs
- □ 2 Seal Coats at \$ 0.70 /sy 16 yrs

□ Total \$7.00 /sy for 56 yrs

Pay Me Later

2 Remove & Replace at \$ 14.00 /sy 54 yrs

□ Total \$28.00 /sy for 54 yrs

Compare

- □ Pay Me Now
 - Total \$7.00 /sy for 56 yrs

Pay Me Later

- Total \$28.00 /sy for 54 yrs
- □ Which Gave Better Service?

Good Roads Cost Less than Bad Roads

- It costs the maintaining agencies less to have good roads than bad roads - Over the long term
- □ Providing:
 - Reasonable level of service provided
 - Pavements will respond to preventive maintenance, e.g. they must be structurally adequate
- Pavement preservation approach provides best roads for the least cost

Pavements Must be Designed

- Pavements not structurally adequate to support traffic loads will fail no matter the preventive maintenance applied
- □ Many local pavements not designed
- Many agencies have a large backlog of more extensive/expensive work

To Address Backlog

- □ Agencies must retain good roads
- □ While repairing poor roads

Pavement Management Management Software

- Decision support tool
- □ Used to help make cost-effective decisions

In Concept

Pavement Management Covers

- □ Planning
- □ Programming
- □ Analysis
- □ Design
- □ Construction
- □ Research

As Implemented

- Pavement Management Systems Primarily Address:
- □ Maintenance
- Rehabilitation
- □ Reconstruction
- of the Existing Pavement System

Maintenance Addressed by PMS

- □ Programmed or planned maintenance
- □ Preventive maintenance

Maintenance Management Systems

Normally Address

- □ Routine maintenance
- □ Work requirements
- □ Work standards
- □ Etc.

Do

Understand Infrastructure Asset Management Levels

Pavement & Infrastructure Asset Management Levels

- Strategic the entire transportation system or infrastructure system
- □ Network the entire street/road network
- Project-Selection select those to be worked on in the current or next funding cycle
- Project design and construction of a specific pavement section

Asset and Infrastructure Management

Asset

Strategic – Level

- Related to Investment Analysis & Fund Allocation
 - Total Funds Needed and Allocation of Funds for Each Type Facility to Meet Established Goals
 - Show Impact of Funding Options
 - Justification of Funds
- **Communicate with Funding Authorities**
 - Level of service desired (Goals & Policies)
 - Investment needed to provide that service
- Previously Considered Planning Activities

Network-Level

□ Related to the Budget Process

- Identify Maintenance and Rehabilitation Needs
- Funds Needed to Complete M&R
- Prioritized Listings of Segments Needing Work
- □ Allocation to
 - Sub-organizations
 - Funding Categories
- □ Show Impact of Funding Options
 - Preservation vs New Construction
 - Distribution Among Sub-organizations
- □ Communicate Within Agency

Input from Strategic-level

Project-Selection-Level

- Identify Constraints not Previously Considered
 - Physical
 - Financial
- □ Refine Alternative Treatments
- □ Improve Cost Estimates
- Select Segments for Funding & Project-Level Analysis, Design & Construction
- □ Show Impact of Deviation from Network-Level

Input from Network-level

Project-Level

- Develop Cost-effective Strategy for:
 - Original Construction
 - Maintenance
 - Rehabilitation
 - Reconstruction
- Within Imposed Constraints
- Complete Design
- Construct Project

Input from Project Selection-level 4

Post Project-Level Analysis & Design

Complete Required Work

Monitor Construction

□ Monitor Performance

Infrastructure Life Cycle

Differences in Those Responsible

Project-level

- Engineers/Technical Staff
- Project-selection Level
 - Senior Management and/or Department/District Managers
 - Department/District Staff
- □ Network-level
 - Senior Management
 - District/Department Managers
- □ Strategic-level
 - Funding authorities
 - Senior management

Those Responsible Vary

- Differences Depend on:
 - Centralized, Decentralized, Public Private Partnerships or Privatized
 - Funding Source
 - □ Capital vs Maintenance
 - □ Enterprise vs General vs Dedicated Funds
 - Importance of Facility
 - Organizational & Historical Relationships

Differences in Data Required

- Project-level Detailed data needed to complete final design
- For those sections selected for work in funding period (very small % of network)
 - Mechanics based design models and inputs
 - Functional, structural, & safety requirements
 - Available materials, etc.
 - Material properties, construction techniques, etc.
 - Other constraints & impacts
 - Costs & available funds
 - Prior performance if M&R

Project-Selection Level

- Enough data to compare preliminary alternatives for sections considered for funding (small % of network)
 - Consider constraints not included in network-level analysis
 - □ Programmed work
 - □ Additional work
 - **Funding restrictions**
 - Define work limits & best time to complete work
 - □ More complete performance data than network-level
 - Preliminary design using limited data in full model or limited design models

Network-Level

□ Data on every segment in the network □ Enough to identify:

- Best group of candidate segments or
- Number & type of segments that need to be addressed
- Funding impacts of different alternatives
- Optimization, prioritization, or simulation using empirical models that connect condition, or changes in condition, of type facility to changes to funds invested
 - □ Network-level condition
 - □ Network inventory
 - □ Past M&R, etc.

Strategic-Level

□Focus of Asset Management

- Combined Data from Network-level Systems
 - Data on every segment in every infrastructure network
- □ Funding needed to provide desired level of service in all facilities
 - Enough to identify:
 - □ Best allocation among systems
 - Funding impacts of different alternatives
 - Multi-objective optimization, prioritization, or tools using empirical models that connect performance, or changes in performance, of type facility to changes to funds invested

Differences in Data Summary

□ Project-level

- Detailed data needed to complete design
- For very small % of network
- □ Project selection-level
 - Enough data to select projects to be funded
 - For small % of network
- □ Network-level
 - Enough data to identify candidates & support allocation
 - For entire network
- □ Strategic-level
 - Data from network-level (entire network)
 - Data that funding authorities can use
 - Indicators of work performed and results achieved

Do

Understand at which Levels Decision Support Software will Assist

Pavement Management Software

- □ Primarily supports network-level analysis
- Can assist with some project selection-level analysis
- □ Provides input for strategic level analysis
- Does not design pavements
- Does not identify segments needing emergency or routine maintenance
Do

Understand What Assistance a Pavement Management Decision Support Software will Provide

Network-Level Elements

- □ Inventory
- □ Condition assessment
- Determination of fund needs
- □ Identification of candidate projects for funding
- Determine impact of funding decisions on future condition and fund needs
- □ Feedback process

Inventory

- □ What the agency is responsible for
- □ Where it is located
- Basic information needed to support networklevel decisions

Condition Assessment

Defines the health of individual sections
Collectively defines the health of the network

Determination of Fund and Work Needs

- □ Identifies sections needing work
- Determines funds needed to complete work

Prioritizing Candidate Sections

- □ Rank order sections needing work
- Goal provide best possible pavement network for available funds

Determine the Impact of Funding

- □ Connect PMS to funding decisions
- Determine funds needed to provide desired level of service
- Justification for funding requests
- □ Support for allocation decisions

Feedback System

- □ Helps system learn from past
- Improves reliability
- □ Updating costs
- Updating projection procedures

Project Selection-level Analysis

- Used to develop improved cost estimates for each individual segment
- Consider constraints & cost elements not included in network-level analysis
- □ May require more data and more analysis
- □ Some help from some PM software
 - Run Analysis with Selected Projects

Project-Level Analysis

- Used to determine the best treatment and to develop final cost estimates for each individual segment
- Requires more detailed data and more extensive analysis

Project-Level Coverage

- Network M&R of existing system
- □ Project-level
 - New pavements
 - Rehabilitation
 - Reconstruction
 - Preventive (programmed) maintenance

Project-Level Elements

- Design and analysis
- Developing maintenance, rehabilitation, and reconstruction treatments
- □ Select best strategy

Project Level Requires

- Design procedures
- Additional data collection
- □ Cause of deterioration
- □ Alternative treatment strategies to address cause
- □ Funding estimates for each alternative strategy
- □ Life estimated for each alternative strategy
- □ Life-cycle costing
- Consider constraints

Project Level Analysis Followed by

□ Completion of Required Work

Monitoring Construction

□ Monitoring Performance

Do

Follow Established Pavement Management Implementation Steps

Implementation Concepts

Mandated implementation

versus

Actual use

- □ IMS is implemented if it
 - Impacts decisions

Recommended Approach

- □ Phased process
 - 1. For potential champions
 - 2. Get decision from management
 - 3. Select & Test PMS
 - 4. Evaluate & Adjust PMS prior to full implementation
 - 5. Put PMS components in place
 - 6. Develop effective use
- □ May start at any point
- □ May redo some steps

Steps Appropriate for

- □ New Implementation
- □ Implementation of new component

Phase 1 - Potential Champions

- Deciding that PMS needed
- Directed at PMS "champion"

Components of Phase 1

- □ First Knowledge
 - Recognize need to change or enhance
- □ Attitude Formation
 - Requires knowledge of PMS Principles
 - "How-to" information

More Components of Phase 1

- Decide to implement/adopt
- Develop alliances
- □ Formulate initial goals
- Get PMS adoption or change on agency agenda

Don't

Start until you know your agency and understand the probably barriers you will encounter

Institutional Analysis

- Barriers to Adoption Implementation or Effective Use
 - Adoption
 - Implementation
 - Effective use
- □ Most are people and institution related
- Which ones will impact your implementation efforts

Turf Protection

- □ Information is power
- □ Some within organization feel threatened when new methods are being considered

Fear of Exposure

□ PMS may not agree with previous decisions

If It Wasn't Developed Here, It Can't Be Any Good

□ Refusal to use PMS developed by others

Resistance to Change

- □ People who just do not want to change
 - I know how to do my job
 - It took me a long time to learn this
 - I don't want to have to start over

One Person Show

- □ Investment in 1 or 2 people
- □ Lost through personnel turnover
- □ Cross-training is often impractical

Do Know

- □ Who will need to be involved
- □ Who will be most likely to resist adoption
- □ Who will be most likely to resist use
- □ Who can have the most negative impact

Organizational Analysis

□ More Later

Phase 2 – Management Decision

- □ Obtaining a corporate decision by the agency
 - Management commits to implementing PMS
 - Champion must convince management to commit
- □ Prepare implementation plan for agency

Champion Persuades Management

- Demonstrate that PMS or new component is better than current process
 - Explain PMS concepts
 - Describe problems that PMS can address
 - Identify requirements
 - Show benefits

Agency Decides

Management decides to adopt (or reject) PMS

Decision can be conditional

Form Steering Committee

- Upper level management, possibly include elected officials
- □ Leadership of all affected groups
- □ Provide support needed to facilitate
- □ Prepare (review) goals
- □ Ensure adequate resources are available
- □ Help get "buy in"

Gain Commitment for Funding

Real commitment occurs when funds and resources are committed

Form Implementation Group

- □ Should include people from all major users
- Responsible for day-to-day efforts
- Maintain close liaison with steering committee
- □ Core group of trained personnel
- □ Group of "champions"
- □ Convert goals into work plan
Phase 3 - Select & Test PMS

- Responsibility of Implementation (Working) Group
 - Coordination with Steering Committee
- Selecting and Testing PMS
 - PMS components
 - Data collection methods
 - Software
 - Management procedures
- □ More details in this step later

Conduct More Organizational Analysis

- Review existing organizational structure and decision making processes
 - □ Design and/or Select System
 - Match to agency needs
 - Match to agency resources
 - Or Modify Selected PMS
 Modify to fit agency needs & resources

Prepare Implementation Plan

- □ As specific as possible
- Approved by the steering committee
- □ Staged implementation often preferred
 - Conditional acceptance
 - Find needed changes while they can still be made without large penalties
 - Financial/resource constraints
 - Possible pilot implementation
- □ Provide adequate time for training

Implement through Trial Operation

- □ Use small percentage of network
- □ Go through all usage steps
- □ Identify needed changes
- □ Use as training
- Document costs and results

Phase 4 - Evaluate & Adjust PMS

- Final Agency Decision
 - Continue through full implementation?
- □ Management commits to:
 - Full implementation
 - Desired revisions
 - Repeating some steps if needed
 - Rejection at this time

Revise the Goals

- Steering Committee
 - Looks at needed resources versus available resources
 - Looks at benefits
 - Reviews original goals
 - Reviews time tables and implementation plans
 - Revises as needed

Revise the Implementation Plan

- □ Implementation (Working) Group
 - Identify revisions needed for PMS
 - Consider revised goals
 - Consider revised resource plans
 - Revise work plans
 - Can still be staged
 - Training and support must be provided

Phase 5 – Complete Implementation

□ Make final adjustments

- Data collection
- Software

□ Implement for full infrastructure system

□ Largest initial expenditure of resources

Implementation for Full System

- □ Complete:
 - Data collection
 - Data entry
 - Program revisions
 - Prepare plans to submit to funding authorities
- □ Use as training opportunity
 - Train appropriate agency personnel
 - Communication with senior management

Stage 6 - Effective PMS Use

- IMS must become a part of normal management process
 - Institutionalize management approach using PMS decision support system

Matching Output to Management Styles and Needs

- □ Modify reports to match style and needs for
 - Agency management
 - Funding authorities
- □ Train management in PMS

Placement in the Organization

- □ Formalize PMS in organizational structure
- Facilitate communication to upper, middle, and lower management
- □ Assign responsibility for:
 - Data collection
 - Data entry
 - Maintaining data base integrity
 - Preparing reports for selected groups
 - Updating data

Training on a Continuing Basis

- □ Support changes and improvements
- □ Refresher training needed due to:
 - Part time job
 - Staff turn-over

□ Formalize training as part of agency culture

Adjust and Improve

□ Respond to technology changes in:

- Data collection
- Analysis
- Data storage
- Software
- Hardware

Assistance

- Need depends on PMS knowledge & capabilities in agency
- Select consultant to give support at selected stages
 - Data collection services
 - Training
 - Developing programs

Sources of Information and Assistance

□ Look for available assistance

- AASHTO
- FHWA
- NACE
- APWA
- ASCE
- Universities and Research Organizations
- Neighboring jurisdictions
- User groups
- Consultants

Summary

- □ Implementation needs to be planned
- □ Large implementation efforts should be staged
- Specific phases of implementation need to be considered
- □ All affected groups need to be involved
- Plans need to be changeable
 - Issues will develop
 - Can redo phases

Summary Continued

- More barriers require more implementation planning
- Major changes need to be planned as well as new adoption
- Need to consider both agency needs and resources
- □ ASTM Guide E 1889

Do

Select Pavement Management Methodologies and Software that Supports Your Agency Needs

Do

Remember that pavement management software is network-level with some possible project selection-level assistance

Organizational Analysis

- □ Agency structure
- **Communication** flow
- Data collection and flow processes
- Existing data bases
- □ Other affected infrastructure systems
- Decision making processes
- Available resources
- □ Constraints

Past Management and Decision Making Practices

- Management practices
- Types of decision making
 - Optional
 - Collective
 - Authoritative
- **Combination**

Planning Horizons

- □ Single year
- Biennial
- □ Longer multiple year plans

Constraints on Selection of Projects

- □ Other activity
- Funds allocated to single project for several years
- Funding categories
- Political commitments
- □ Management decisions

Fixed Facilities and Process

- □ Computer system
- Location referencing system
- Existing data and data formats
- Data collection process
- Existing database manager
- □ Existing GIS Capabilities

Resources

- Resources to implement and operate
 - Funds
 - Staff
 - Equipment
- □ Resources to apply needed treatments
- □ Personnel to operate and maintain the PMS

Competing Fund Needs

- □ Competition for all funds
- Dedicated funds

Size

- □ Staff
- Organizational structure
- □ Road/street network

Structure

- Communications across boundaries
- Matched to functions
- Centralized versus decentralized

Who Will Operate the Process

- □ In-house agency personnel
- □ Consultant
- □ In-house with consultant data collection
- □ Other

Who Will be Responsible

- Where will responsible person be located in organization
- □ Who will ensure:
 - The process is reasonably resource
 - Data is collected
 - Data is entered
 - Reports prepared
 - Presentations presented

Stability

- □ Of organizational structure
- □ Of staff
- □ Of management

Do

Assess Your Needs

Manual Versus Automated Software

Network-level Pavement Management
 Software

Manual Systems Have Limited Capabilities

- □ Inventory on cards
- Condition assessment on cards
- Pick "worst first"; those not worked on in last
 X years
- □ OK for
 - Small towns with less than ~25 miles of streets
 - Counties and townships that primarily have unpaved surfaces

Spreadsheet Systems Also Have Limited Capabilities

- □ Inventory
- Condition assessment
- □ Needs analysis very limited
- □ Prioritization limited to simple set of rules
- □ OK for
 - Small towns with less than ~50 miles of streets
 - Counties and townships that primarily have unpaved surfaces
Microcomputer/Server Based

- □ Advantages in:
 - Storing data
 - Retrieving data
 - Preparing reports
 - Needs analysis
 - Prioritization
 - Impact analysis

Internet Accessed Server Based

- □ More power
- Minimal IT conflict issues
- □ Immediate updates

Do

Select a compatible system that will provide needed support

Match to Agency Needs

- Decision support needed
- Recommendations in useable form
- □ Data collection within available resource

Compatibility

- More compatible to agency approach more likely to be adopted and used
 - Helps when the situation seems dismal
 - Provides information needed by senior management and politicians
- □ Support designed for local agencies
 - Does not require sophisticated outside support
 - Minimizes resources required to implement and operate system

Relative Advantage

- □ Greater perceived advantage more likely adoption and use
- □ Show benefits provided to the agency
- □ Show benefit to operating personnel
- □ Support securing funds

Complexity

- Complexity is relative it can be reduced by training
- Easier to understand more likely to be adopted and used
- Understandable by staff
- □ Explainable to management

Adaptability

- Modifiable to meet individual differences and changes
- Reports and formats
- Accommodate technological changes

Do Avoid

Black Box PMS

Inventory

- Defines What Is Being Managed
 - What Agency Is Responsible for
 - Where It Is Located
 - Basic Information
- □ Compatible with current data
- □ Compatible with GIS, etc.

Condition Assessment

- Condition data collection costly
- □ Must be updated periodically

Type of Condition Data

- □ Selected to:
 - Meet needs of agency
 - Resources available
- Distress generally considered the most important at network-level
- Roughness next most important for high speed roads
- Surface friction important for high speed roads seldom collected at local level
- □ Structural primarily used in project-level

Focus of Data Collection

- □ Support for network-level decision support
 - Which segments need work
 - About how much \$ needed
 - Over some analysis period
- Project-level data collected for those sections being designed that year

At Local Agency Network-Level

- Distress most important
- Condition indices help in decision support systems

Method of Collection

- □ Match to:
 - Needed:
 - □ Accuracy
 - □ Precision
 - □ Resolution
 - Available:
 - □ Funds
 - □ Resources

Automated Collection of Distress

- □ Improve safety of personnel
- Decrease traffic interruptions
- □ Funds to contract but limited staff
- □ Will not collect "same" data

Manual Collection of Distress

- Requires commitment of trained personnel
- □ Develops expertise within agency
- Can improve understanding of pavement performance
- □ Can help develop confidence in PMS
- □ Can help develop communication with agency

Reducing Staff Effort

- Data recording devices
- □ Sampling processes

Data Collection Equipment and Local Agencies

- Initial Expense
- □ Specially trained operators
- □ Trained personnel to interpret the data
- □ Limited use
- □ High maintenance costs

Contracting for Data Collection

- □ Define:
 - Data to be collected
 - Accuracy needed
 - Precision desired
- □ Let economics tell how to collect
- □ See my presentation from last year

Do

Develop a Data Quality Plan

Quality Control Plan for Contracted Data Collection

- Prequalification of inspection agency
- Description of the training and experience of the inspectors
- Certifications of inspectors
- Data verification processes completed by the contractor which can include:
 - Periodic re-inspection of "control" sections
 - Re-inspection of sections previously inspected
 - Re-inspection of inspected sections by a supervisor
 - Re-inspection of inspected sections by independent evaluation
- □ Define what will considered acceptable
- Describe what be required if the re-inspection data is not acceptable

Quality Acceptance Plan for Contracted Data Collection

- Verification that Quality Control plans are conducted
- Check Quality Control results to ensure that the required tolerances were met or appropriate corrective actions completed
- Inspection of small percent of sections inspected by contractor
 - Define acceptance criteria
 - Define requirements imposed on contractor when acceptance criteria is not met
- □ Data checks
 - Check against prior inspection data for same section if no treatment has been applied since last inspection
 - Check against projected PCI

Quality Control is Worth the Cost

- You wouldn't spend money on construction without quality checks
- Don't spend money on inspection without quality control !!

Needs Analysis

□ Reflect past practices and needs of the agency

Needs Analysis

- Identify Sections Needing Work
- Estimate Funds Needed
- Rehabilitation Condition Driven
- Preventive Maintenance
 - Minimum Condition &
 - Time Interval

Rehab – Condition Driven

PM – Time Sequenced

Decision Tree/Matrix Approach

- Network-level planning treatment
 - Assigned each section needing work
 - During analysis period (5 to 20 yrs)
- □ Factors to consider:
 - Condition
 - Usage & importance
 - Surface type

Decision Trees/Matrices

- □ This is where you put in your treatments
- Selecting the treatment for each condition category sets up your strategy
- Selecting the right treatment for the right condition sets up a pavement preservation strategy

Prioritizing

- □ Match:
 - Accuracy of the data used
 - Requirements of the agency
 - Expertise of the personnel

Possible Prioritization Concepts

- □ Worst First Weighted for Traffic
- Least Life-cycle Costs
- Best Benefit-cost Ratio
- Best Effectiveness-cost Ratio

Prioritization Based on Cost-Effectiveness

Cost-Effectiveness

□ Sections

- That will be in the best condition for the longest time for least cost
- Give best return on funds &
- Should be repaired first

Cost-Effectiveness Ratio

Impact of Funding Alternatives

- Connect PMS to Funding Decisions
- Justify Fund Requests
 - How much \$ needed to provide selected level of service
- Support of Allocation Decisions
 - Fix Worst First
 - Apply PM
Projected Condition

- □ How Condition Changes With Alternatives
- □ Amount in poor conditions
- Don't Rely Only on Changes in Average PCI

Deferred or Back-Logged

- Deferred Fund Needs
 - Needs Minus Spend

□ Back-logged

 Sections That Needed Work That Was Not Recommended

Others

- □ Average remaining life
- □ Network value
- □ Funds needed for stop-gap treatments

Results of Impact Analysis

- Ability to Look at Different Funding Scenarios
 - Different Funding Levels
 - Different Allocation Approaches
 - Different Approaches to Treatment

□ Answer "What If?"

Assessing Available PMS Procedures

- □ Contact other users
- □ Implement through trial operation

Do

Consider need for support

Need for Support

- Upper level management
- □ Financial
- □ On-line for software and data operations
- □ User meetings

Training

- □ For all affected by PMS
- □ At several levels
- □ Upper management
- □ Areas of greatest resistance
- □ Must be cyclic and continue indefinitely
- □ Reduce resistance
- □ Reduce perceived complexity

Questions

Specific Issues in Your Agency