Concrete Overlays

Northwest Pavement Management Association 2011Conference Jim Powell, P.E.

Concrete Pavement Overlays

- Use of PCC overlays has grown tremendously in last decade.
- Significant recent research
 - FHWA (ISTEA Section 6005)
 - NCHRP and ACPA Studies
 - State studies
 - > LTPP
- ACI-325 is a comprehensive document on overlays but not in user friendly format.

Why Concrete Overlays?

- Does not require extensive repairs of existing pavement
- Long performance life
- Low maintenance requirements
- High load-carrying capacity
- Withstands heavy truck traffic
- Effective life-cycle costs

National Concrete Overlay Database

- Consult the National Overlay Explorer App on the ACPA website.
- Data on many projects.

View @ http://apps.acpa.org/apps/Overlaypass.html

National Concrete Overlay Explorer

National Concrete Overlay Explorer

← → C fi 🏠 http://overlays.acpa.org/webapps/overlayexplorer/index.html

Þ 19- 8-Contractor: Branco Enterprises, Inc. Engineer: Missouri Department of Transportation Owner: Missouri Department of Transportation Project Size: 9865 se Joint Spacing: 3 ft Doweled Joints: No Joints Sepled: No Integral Widening Co. Reinforcing: Fiber Fiber Type: Polyprop Age of Existing Pover Still In Service: Yes

> **Concrete Overlay Finished Aerial** Image 4 of 6

👩 Microsoft PowerPoi... 🤒 🧐 National Concrete ...

CLOSE X

< 📆 🔂 💶 11:17 AM

Concrete Overlay Guide, 2nd Edition

- Overview of Overlay Families
- Overlay types and uses
- Evaluations & Selections
- Six Overlay Summaries
- Design Section
- Miscellaneous Design Details
- Overlay Materials Section
- Work Zones Under Traffic
- Key Points for Construction
- Accelerated Construction
- Specification Considerations
- Repairs of Overlays

Second Edition September 2008

Family of Concrete Overlays

Evaluations of Existing Pavements for Overlays

- Evaluation establishes if existing pavement is a good candidate for an overlay.
 - The condition of the existing concrete pavement can be initially assessed through:
 - a visual examination of the type, severity, and extent of existing distresses.
 - Concrete material condition can be obtained through analysis of cores taken from the existing pavement.
 - Can it provide an uniform and stable support system for the overlay?
 - Surface deflects can be overcome.
 - Does the condition of the pavement fit the type of overlay proposed?
 - Is the existing slab or joints moving?

Bonded Resurfacing Family

- Thin Overlays (2" 5")
- Over concrete, asphalt, and composites
- Bond is critical

Uses and Advantages- Bonded Resurfacing

of Concrete

2"-5" thickness

- Use when existing pavement is in good structural condition with some surface distress.
- Use to eliminate any surface defects; increase structural capacity; and improve surface friction, noise, and rideability.
- Typically used directly over concrete without additional repairs except for spot-repairing of severely deteriorated areas.
- Working cracks in existing pavement will reflect through.
- Can used in conjunction with widening.

Whitetopping - History

- First Whitetopping
 ➢South 7th street in Terre Haute, Indiana -1918
 ➢Existing flexible pavement was overlaid with
 - 3 4 in. of reinforced concrete
- During 40's and 50's -Used to upgrade military & civil airports
- Highway use
 Started approx
 - Started approx. 1960
 - ➤Types have included JPCP, JRCP, CRCP, FRC

Whitetopping History

- Began in Iowa in 1960's as overlay on farm to market asphalt roads
- Thickness greater than 4"
- Performance was excellent
- Bonding to asphalt layer was noticed

Uses and Advantages- Bonded Resurfacing of Asphalt or Composite Pavements

2"-5" thickness

- Use when existing pavement is in fair or better structural condition with surface distress.
- Use to eliminate any surface defects; increase structural capacity; and improve surface friction, noise, and ride.

Uses and Advantages- Bonded Resurfacing of Asphalt or Composite Pavements

2"-5" thickness

- Typically used directly over asphalt without additional repairs except for minor milling.
- Working cracks in existing pavement will not reflect through.
- Can used in conjunction with widening.

- Spots of distress that aren't visible can be determined through evaluation such as the stiffness of the asphalt pavement and subgrade support conditions.
- Localized areas of weakness can be strengthen through patching. Milling can remove a number of asphalt surface distresses.

- Asphalt is a good reflector of underlining concrete pavement condition.
- A review of the existing profile grade line should be conducted and areas of significant deviation investigated through analysis of core samples in the laboratory.

CONCRETE RESURFACING OF ASPHALT PAVEMENTS

This creates the need to balance thickness and joint spacing.

Milling: Bonded Resurfacing of Asphalt or Composite Pavements

The three main objectives of milling:

- 1. to remove significant surface distortions that contain soft asphalt material, resulting in an inadequate bonding surface
- 2. to reduce high spots to help ensure minimum resurfacing depth and reduce the quantity of concrete needed to fill low spots; and
- 3. to roughen a portion of the surface to enhance bond development between the new concrete overlay and the existing asphalt. (don't leave a thin lift)

Milling: Bonded Resurfacing of Asphalt or Composite Pavements

- Complete removal of ruts is not needed when rutting in the existing asphalt pavement does not exceed 2".
- Any ruts in the existing pavement are filled with concrete, resulting in a thicker concrete overlay above the ruts.

• A minimum of 3"-4" of asphalt should be left after milling because of the reliance on the asphalt pavement to carry a portion of the load.

Important Elements-Bonded Resurfacing of Asphalt/Composite Pavement

- Clean Surface/Bond is important for good performance
- Thin milling may be required to eliminate significant surface distortions of 2" or more and provide good bond.
- Leave at least 3" remaining asphalt after milling.

•Control surface temperature of existing asphalt to below 120°F.

- •Try to keep joints out of wheel paths.
- •Curing should be timely and adequate.
- •Small joint spacing to minimize bonding shear stress

BCOA Thickness Designer

ACPA Application Library / 🔊

← → C f ☆ http://apps.acpa.org/apps/bcoa.aspx

Background

This bonded concrete overlay on asphalt (BCOA) thickness design web application is based primarily on the results of FHWA-ICT-08-016, "Design and Concrete Material Requirements for Ultra-Thin Whitetopping", a research project conducted in cooperation with the Illinois Center for Transportation at the University of Ilinois (ICT), the Illinois Department of Transportation (IDOT), and the Federal Highway Administration (FHWA), The web application reflects the views of the ACPA, who is responsible for the facts and accuracy of the data presented within it. The contents do not necessarily reflect the official views or policies of ICT, IDOT, or FHWA, and this application does not constitute a standard, specification, or regulation. Designers should understand the assumptions/limitations of the research on which this tool is based and also be knowledgeable about the various types of concrete overlay offerings and design/construction details of each type.

		and the local
Rended Concrete Overlay	on Acabalt	(PCO)
sonded Concrete Overlay	on Asphan	(DCO)
hickness Designer	1	

0	D .	
(General	lasion	1)etaile
Ocheral	Design	Details

Design Lane ESALs: Estimate ESALs	0	Help
Slabs Cracked at End of Design Life (%):	20 %	Help
Reliability (%):	85 %	Help
Effective Temperature Gradient (°F/in.):	-1.4	Help
Time at Effective Temperature Gradient (%):	58 %	Help

Existing Pavement Structure Details

Remaining Asphalt Thickness (in.):	4	Help
Asphalt Modulus of Elasticity (psi):	700,000	Help
Modulus of Subgrade Reaction (pci):	150	Help
	Calculate k-Value	

▶ B- ₽

BCOA Thickness Designer

Concrete Material Details				
28-Day Flexural Strength (psi):	750	Help		
Fibers Used In Concrete:	No Fibers	•		
Concrete Modulus of Elasticity (psi)	3,600,000	Help		
Coefficient of Thermal Expansion (10 ^{-6/9} F):	5.5	Help		
Concrete Overlay Details				
Joint Spacing (in.):	72	Help		
Preoverlay Surface Preparation:	lid Asphalt, Milled & Cle	aned 💌	Help	
Calculate Design				
Calculate Design Calculate Reset Fields				
Calculate Design Calculate Reset Fields Processing Calculated Concrete Thickness:	4 inches	Help		

View @ http://apps.acpa.org/apps/bcoa.aspx

BCOA Thickness Designer

- Available 24-7 from web
- Calibrated with available overlay performance data (Illinois, Iowa)
- Research underway to improve some criteria (by CP Tech Center)
 - Temperature modeling
 - ➤Calibration
- Will incorporate technology into ACPA's StreetPave along with other design models

Unbonded Resurfacing Family

- Thicker overlays- real pavement
- Over concrete, asphalt, or composite
- Bond is not considered in the design
- Bonding is still good!

Uses and Advantages - Unbonded Resurfacing of Concrete Pavements

4" - 11" thickness

- Use when existing pavement is in poor condition, including with material-related distress such as D-cracking and ASR, when underlying pavement and subbase are stable and uniform except for isolated areas that can be repaired.
- Use to restore structural capacity of the existing pavement and increase pavement life equivalent to full-depth pavement.
- Also results in improved surface friction, noise, and ride.

- The evaluation establishes whether the existing concrete and its subbbase can provide a uniform strength platform and, if not, what actions are necessary to obtain that uniformity.
- Look for events of movement in the slab. Profile is a good check.

Unbonded on Concrete

- If the movement is confined to isolated areas, full depth repairs can solve the problem.
- For faulted pavements, if the subgrade is stable, the overlay has proven to be adequate.
- Minor faulting is generally not a concern when a separator layer of 1" or greater is used.

R	epairs Unbonde	d on Concerte	Cleaning Sub-drainage
	Existing pavement condition	Possible repairs to consider	
	Faulting 1/4" to 3/8"	None	_
	Faulting >3/8"	Thicker separator layer; see step 2	-
	Significant tenting	Full-depth repair	-
	Badly shattered slabs	Full-depth repair	-
	Significant pumping	Full-depth spot repair and improve drainage	-
	Severe joint spalling	Clean	_
	CRCP with punchouts or other severe damage	Full-depth repair	

Important Elements - Unbonded Concrete Resurfacing of Concrete Pavements

- Full-depth repairs are required only where structural integrity is lost at isolated spots.
- Asphalt separator layer is important to isolate unbonded resurfacing from underlying pavement and minimize reflective cracking.
- Faulting (<3/8") is generally not a concern when the asphalt separation layer is 1".
- Shorter joint spacing helps minimize curling and warping stresses.
- No need to match joints with those of the underlying concrete pavement.

Separation for Unbonded Overlays

- Separation required for good performance.
- Isolate overlay from existing pavement:
 - > Prevent reflection cracking.
 - Prevent bonding/mechanical interlocking.
 - Provide level surface for overlage construction.
- Traditional 1 in dense HMA
- New Nonwoven Geotextile fabric (MO, ND, VA...)

View at: http://www.concreteontop.com/

Benefits of Geotextile Interlayer

- Provides adequate separation
- Avoids another paving operation:
 Saves on mobilization
 Avoids materials availability/cost issues
- Reduces overhead clearance issues
- Reduces materials for shoulder fills
- Reduces project costs

Uses and Advantages - Unbonded Concrete Resurfacing of Asphalt or Composite Pavements

4" - 11" thickness

- Use when existing pavement is deteriorated condition.
 - severe rutting,
 - potholes,
 - alligator cracking,
 - shoving, and pumping
 - exhibits past D-cracking and ASR,
- Used when underlying pavements and subbase are stable and uniform except for isolated areas that can be repaired.

Uses and Advantages - Unbonded Concrete Resurfacing of Asphalt or Composite Pavements

4" - 11" thickness

- Use to restore structural capacity of the existing pavement
- Use to increase pavement life equivalent to full-depth pavement.
- Eliminates rutting and shoving problems and results in improved surface friction, noise, and ride.

Rep Unk or (airs onded on As composite	phalt Pothole Rutting Rutting	Full-depth repair patches Full-depth repair patches Shoving Pumping Shoving Pumping Ungitudinal & transverse Uneven surface profile due to on nounform Dase support
	Existing pavement condition	Possible repairs to consider	
	Area of subgrade failure	Remove and replace with stable material	
	Severe distress that results in variation in strength of asphalt	Remove and replace with stable material	-
	Potholes	Fill with lean or plain concrete or asphalt	-
	Shoving	Mill	-
	Rutting ≥2"	Mill	-
	Rutting <2"	None or mill	-
	Cracking ≥4"	Fill with lean concrete	-
	Cracking <4"	None	-

Important Elements - Unbonded Concrete Resurfacing of Asphalt or Composite Pavements

- Full-depth repairs are required only where structural integrity is lost at isolated spots.
- Mill only severe surface distortions.
- Cracks in the asphalt will not reflect up, since concrete overlay movement dominates.
- Timing of the joint sawing is important, particularly for thinner resurfacing.
- Examine profile for distortion at joints.
- Existing asphalt serves as separator layer.
- Slightly shorter Joint spacing than normal

Milling: Unbonded Resurfacing of Asphalt or Composite Pavements

- The amount of asphalt removal depends on the types and severity of distresses and the thickness of the asphalt pavement.
- The objective of removing material is not to obtain a perfect cross section. It is not necessary to completely remove ruts. Usually 1"–2" of asphalt is removed.

• A minimum of 3"-4" of asphalt should be left after milling to provide a solid foundation. There is no reason to remove good asphalt which only increase the concrete thickness and project cost

- Spokane, WA
 - >3 sections on I-90, 3", 4", 5"
 - ➤Constructed in 2004
 - Excellent performance in 4" and 5" sections
 - ➤To be reconstructed this year

Kalispell
5" on 3"-5" of HMA
6' joint spacing
18,000 ADT
30% Trucks
Built in 2000
Performing very well

Bellevue
≫3" PCC on 3" AC
≫Built 1998
>Still in service
>Cracking in edge panels

- US 20/26 & Middleton Road
- Built in 2005
- 4" on 4"
- Still in service
- Excellent performance

- NE 92nd, Portland, OR
- 4" fiber reinforced PCC on approx. 3" ACP
- Constructed June 2008
- Still in service
- Excellent performance

- N Denver Ave, Portland, OR
- 2" fiber reinforced PCCP on approx 2" ACP
- Cracking in panels over utility trench, repaired
- Constructed fall 2010
- Still in service
- Excellent performance

Bonded Resurfacing Family

• Use to eliminate surface distress (good to fair condition). Concept is for minimal repairs. Bond is essential along with timely of sawing of joints.

Bonded Concrete Resurfacing of Concrete Pavements -previously called bonded overlay-

- Matched joints allow structure to move monolithically.
- Concrete with thermal properties similar to that of existing pavement minimizes shear stress in bond.
- Cut transverse joints full depth and longitudinal joints T/2.

Bonded Concrete Resurfacing of Asphalt Pavements – previously called ultra-thin whitetopping, UTW–

- Small square panels reduce curling, warping, & shear stresses.
- Mill if necessary to correct crown, remove surface distresses, improve bonding. Insure to leave 3" min. HMA after milling.
- HMA surface temperature below 120 F before paving.

Bonded Concrete Resurfacing of Composite Pavements

- Same as Asphalt Pavements.
- Look at HMA profile and condition for underlining PCC distress.

Unbonded Resurfacing Family

 Use to eliminate surface and structural distress (poor to deteriorated condition). Successfully used with high reliability. Concept is for minimal repairs

Unbonded Concrete Resurfacing of Concrete Pavements –previously called unbonded overlay–

- Asphalt separator layer is important to isolate unbonded resurfacing from underlying pavement and minimize reflective cracking.
 - Shorter joint spacing helps minimize curling and warping stresses.

Unbonded Concrete Resurfacing of Asphalt Pavements –previously called conventional whitetopping–

Unbonded resurfacing movement dominates underlying asphalt.

•Slightly smaller than normal joint spacing is common and depends on the thickness of the underlying pavement and the unbonded resurfacing.

Unbonded Concrete Resurfacing of Composite Pavements

- Existing asphalt serves as separator layer.
- Slightly smaller than normal joint spacing is common and depends on the thickness of the underlying pavement and the unbonded resurfacing.

THANK YOU !

Jim Powell American Concrete Pavement Association Northwest Chapter jim@nwpavement.com (360) 956-7080