The True Value of Pavement Preservation

Don Newell

Marion County, Oregon

Two fold mission of Public Road Agencies (Public Works):

. reserve the ublic's

Current trends in local NW governments (2011):

- <u>.</u>
- •

•

Understand Your Road System

Understand Changes
You Will Know What You Should

Next

Pavement Management define:

Systematic method of routinely collecting and processing decision-making data needed to make maximum use of limited preservation dollars.

Decision Making Tool

Decision Making Tool

Pavement Management aids in:

Applying the correct pavement treatment At the correct location

At the correct time.

Decision Making Tool

The Pavement Deterioration Curve

My career PaveMngt reference base:

Pavement is the "Y" axis

Pavement Condition

Pavement Condition

Critical PCI

Preventive Maintenance

Corrective Repairs

Reconstruction

Rehabilitation

Where are we today?

We have been using Pavement Management Software Systems for time now.....

Our work is now recognized - examples:

Improved Tools – i.e. GIS; Web presence

2001 - GASB 34

2009 - Obama Stimulation Package

Public Engagement / Informed – *Even Electives!*

Understand Your Road System Understand Changes

You Will Know What You Should Do Next

Understand Your Road System

Weighted PCI Averages: Districts & System

Based on Fiscal Years

Historical Road Pavement Condition

Understand Your Road System Understand Changes

You Will Know What You Should Do Next

Understand Changes

Modeling: Trending subgroups range performances

Road Condition: Excellent PCI: 91 - 100

Treatments: Minimal to None

Service Cost: Minimal to None

Inventory Trend: Severe Decrease

Minor Repairs

Road Condition: Very Good PCI: 80 - 89

Treatments: Seals & Patching

Service Cost: \$1/Sq Yd

Inventory Trend: Slight Decrease

Major Repairs

Road Condition: **Good-Fair** PCI: 55 - 79

Treatments: Overlays

Service Cost: \$7/Sq Yd

Inventory Trend: Flat – moving downward

Good & Fair

Time to Rebuild!

Road Condition: Poor-Failed PCI: 0 - 54

Treatments: Generally Reconstructions

Service Cost: \$25/Sq Yd

Inventory Trend: Increase

You shouldn't be remodeling the kitchen if the roof is leaking!

Understand Changes

Your Network PCI is only a Snapshot in time of how your system is performing – just like your child's report card grade.

What is key is identify change as it occur can respond to - that homework.

An Analogy

EXCELLENT GOOD FAIR VERY POOR ©Copyright 1996 Deighton Associates Limited

Seal =

\$1 / sq yd

Overlay =

\$7 / sq yd

Reconstruct =

\$25 / sq yd

Process is continuous and inevitable

The rate of water flow increases as condition decreases

The effort to pump water increases with decreasing condition

When you can, tie your Pavement Performance Data to \$

Link your data to \$

What will our money buy?

Modeling: Predicting the Future Performance

Modeling: Overa Impacts of Treatment Choices

Untreated Road System

700-miles, 10-miles of each PCI value: 31-100

average PCI = 65.5

Pavement Condition Index Values (PCI's)

Treated Road System - Scenario #1: Asphalt Concrete Overlays - 2"

10-miles of PCI value: 55 (new 100 PCI) @ \$180K/mile = \$1.8M new average PCI = 66.14 + 0.64 increase

Treated Road System - Scenario #2: Chip Seals

50-miles of PCI values: 71-75 (new 90 PCI) @ \$36K/mile = \$1.8M

new average PCI = 66.71 + 1.21 increase 47% above AC Overlays

Treated Road System - Scenario #3: Chip Seals

60-miles of PCI values: 70-75 (new 90 PCI) @ \$30K/mile = \$1.8M new average PCI = 67 + 1.5 increase 57% above AC Overlays

Treated Road System - Scenario #4: 50% AC Overlays; 50% Chip Seals

Overlays: 5-miles of PCI value: 55 (new 100 PCI) @ \$180K/mile = \$0.9M Chip Seals: 30-miles of PCI values: 73-75 (new 90 PCI) @ \$30K/mile = \$0.9M new average PCI = 66.51 + 1.01 increase

Pavement Condition Index Values (PCI's)

Contract Overlays & Public Works / Operations Preservation Treatments Chart 2

Multi-year Treatment

Planning

Do you know what roads are candidates for treatments 4-years from now?

Modeling:

Long-term Real Costs

chart 1 - General PCI Failure Curve PC 35-year life of a Non-maintained Road 100 80 60 55.7 Avg **PCI** 40 Non-maintained →accumulative average PCI → 35-year average PCI 20 ---Poly. (Non-maintained) 13 15 17 19 21 23 25 27 29 31 33 35 11 Years

- 75 years

chart 2 - PCI over time

chart 2 - PCI over time - 75 years

chart 3 - Average PCI over time

chart 5 - Buying Power Index (BPI) = PCI per \$ spent (Accumulative PCI / Accumulative \$ spent / \$100,00) = BPI

chart 5c - Buying Power Index (BPI) = PCI per \$ spent (Accumulative PCI / Accumulative \$ spent / \$100,00) = BPI

In Summary

	Non Maintained	Maintained	Difference	%
\$ spent	\$1,590,000	\$1,250,000	\$340,000	27%
\$ spent w/o Cap	\$1,060,000	\$720,000	\$340,000	47%
PCI	58.1	84.5	26.3	45%
\$ spent w/ inflate	\$4,772,813	\$2,838,868	\$1,933,945	68%
5 Spent W/ Innate	Ψ4,772,013	\$2,030,000	Φ1,933,943	00 /0
\$ spent w/ inflate				
w/o Cap	\$4,242,813	\$2,308,868	\$1,933,945	84%
BPI	3.7	6.8	3.1	85%
BPI w/inflate	1.2	3.0	1.8	144%

Percentage %

The American Report of the Control o

Management, Workmanship

reserve the ublic's

3. Understanding Your Road System, It's Changes and What To Do Next

4. Applying the correct pavement treatment at the correct location at the correct time.

